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Abstract
The anomalous scaling exponents ζn of the longitudinal structure functions
Sn for homogeneous isotropic turbulence are derived from the Navier–
Stokes equations by using field theoretic methods to develop a low-energy
approximation in which the Kolmogorov theory is shown to act effectively as a
mean field theory. The corrections to the Kolmogorov exponents are expressed
in terms of the anomalous dimensions of the composite operators which occur
in the definition of Sn. These are calculated from the anomalous scaling of
the appropriate class of nonlinear Green function, using an uv fixed point of
the renormalization group, which thereby establishes the connection with the
dynamics of the turbulence. The main result is an algebraic expression for ζn,
which contains no adjustable constants. It is valid at orders n below g−1

∗ , where
g∗ is the fixed point coupling constant. This expression is used to calculate
ζn for orders in the range n = 2–10, and the results are shown to be in good
agreement with experimental data, key examples being ζ2 = 0.7, ζ3 = 1 and
ζ6 = 1.8.

PACS numbers: 0550, 4727

1. Introduction

The study of homogeneous isotropic turbulence has as its aim the derivation of the statistical
features of small-scale velocity fluctuations at high Reynolds numbers, based on the assumption
that they exhibit universal characteristics independent of the form of the large-scale flow
structures [1–3]. A key quantity of interest is the longitudinal velocity increment, v+ − v−,
where v± = v1(x± r/2, y, z, t), the velocity component v1 and the separation distance r both
being in the same direction, here the x-axis. An empirical fact is that its nth order moment,
the longitudinal structure function Sn(r), defined by

Sn(r) = 〈
(v+ − v−)n

〉
(1)

exhibits multiscaling. That is, the exponent ζn, defined by the scaling relation

Sn(r) ∼ rζn (2)
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is a nonlinear function of the ordern. This behaviour is not explained by the classical turbulence
theory of Kolmogorov [4] which yields a linear dependence

ζKol
n = n

3
. (3)

Moreover, the amount by which ζn differs from ζKol
n , called the anomaly, has defied attempts

at quantitative explanation [1–3, 5, 6]. The obstacle to progress with the theory is the strong
nonlinearity of the governing Navier–Stokes (NS) equations. In this paper, our aim is to
show how modern statistical field theory can be used to overcome this difficulty and provide
theoretical predictions for ζn, which agree well with turbulent flow data.

The idea that statistical field theory can be brought to bear on the problem of turbulence is
not itself new. Indeed, interest in describing turbulence in terms of the underlying functional
probability distribution of the velocity field, together with its corresponding generating
functionalW , has a long history [5,6]. But such work has suffered from the weakness of relying
on conventional perturbation theory to effect closure of the statistical hierarchy, whereas it is
widely believed that a non-perturbative treatment is necessary, because the NS equations lack
a small parameter. Consequently, progress with this approach has been disappointing.

The question is whether we can find a middle course, which avoids the limitations
of conventional perturbation theory, while not demanding an intractable non-perturbative
approach. Here we explore the possibility of formulating a more efficient perturbation
theory by developing a zero-order solution which already accounts for the dominant nonlinear
interactions, in an attempt, as it were, to deplete the effect of the nonlinearity. We shall do
this by adopting a more general quadratic form in W in place of the viscous form which
arises naturally. The modified quadratic form is determined self-consistently from the NS
nonlinearity using the linear response function and the energy equation. In the inertial range,
it leads directly to the Kolmogorov distribution, after allowing for the kinematic effect of the
sweeping of the smaller scales by the larger ones. The difference between these quadratic
forms then appears as a perturbation, which, as we shall see, is not critical, provided that the
force spectrum function is non-zero only at small wavenumbers and yields a finite input power.

Having incorporated the dominant nonlinearities which are responsible for the turbulence
energy cascade into the zero-order solution, what is then lacking is the effect of the fluctuating
dissipation rate, which is the well known defect of the Kolmogorov theory [5]. In this approach,
the perturbation theory is then, in effect, only required to accommodate the residual coupling
associated with these fluctuations, which are directly responsible for the anomalies. The
fact that the anomalies are small, and associated with a weak residual coupling, provides
good reason to expect that a small expansion parameter might emerge, thereby rendering the
problem accessible to perturbation theory, essentially by means of a standard loop-expansion
of the generating functional.

Although the use of the modified quadratic form as an initial approximation would appear
to be an attractive option, providing a sound physical basis for the approximate evaluation
of the generating functional, it poses severe technical problems, the most significant being
the occurrence of divergences at higher orders in perturbation theory, due to the incomplete
representation of the large-scale flow. These divergences are of two types: power divergences
(including power × logarithmic), which are associated with the sweeping, and pure logarithmic
divergences, which describe the cascade process. On the other hand, statistical field theory [7],
provides the mathematical techniques needed to compensate for such divergences, in the
form of the well known processes of resummation and renormalization. In particular,
renormalization [8] provides a procedure whereby the scale invariance in (2) can be recovered
from a divergent theory, yielding the exponents in terms of the anomalous dimensions of the
composite operators appearing in (1), which we can calculate from the appropriate nonlinear
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Green functions. The modified quadratic form itself follows uniquely from the requirement
for the absence of non-renormalizable terms, after renormalizing the basic parameters of W
and allowing for sweeping.

Fortunately, sweeping effects do not pose an insuperable obstacle, notwithstanding that
the initial formulation is Eulerian. Indeed, we show that the power divergences associated with
sweeping can be removed by introducing a single sweeping interaction term, which can be
derived from the generating functional itself by transforming to a frame moving with the local
velocity of the large scale eddies, using a random Galilean transformation of the velocity field,
having an rms convection speed which is calculated from the NS nonlinearity. The application
of this transformation does not, of course, affect the values of Sn(r) and, thus, enables the
straining interactions which determine the spectrum to be separated from the background of
sweeping convection, yielding, in effect, quasi-Lagrangian forms. In this way, as we shall
show below, it proves possible to demonstrate multiscaling and calculate the anomalies of the
structure functions accurately.

2. Theoretical foundations

Our starting point is the NS equations, describing flow in an incompressible fluid of unit
density, velocity v, kinematic viscosity ν and pressure p, and driven by a random solenoidal
stirring force f , which are

∂v

∂t
+ v · ∇v = −∇p + ν̄∇2v + f (4)

and

div v = 0. (5)

Suppose that

v(x̂) = V (x̂|f) (6)

is the solution of (4) at the space–time point x̂ = (x, t), corresponding to a force f(x̂),
which has a Gaussian probability distribution P(f). Then the generating functional W for the
correlation functions of the velocity field can be written as the functional integral

W =
∫

exp(S)P(f)Df (7)

where the source term is given by

S(J) =
∫

J(x̂) · V (x̂|f) dx̂ (8)

and the correlators follow by functional differentiation with respect to the source field J(x̂).
Given that we cannot obtain an explicit expression for the solution (6), the crux of the problem
is how to approximate (7) with the accuracy required to calculate the ζn. In our approach,
as indicated above, we prove that the Kolmogorov theory can be used effectively as a mean
field theory in a saddle-point evaluation of (7), and that this leads to an expansion which has
a genuinely small coupling constant.

Within the context of a field theoretic interpretation of (7), each term of the binomial
expansion of (1) must be regarded as an operator product of the usual Wilson type, (see
e.g. [7,8]). Correspondingly, the powers of v± must be treated as composite operators, which,
in accordance with standard procedures [7], must be generated fromW by independent sources.
However, in defining a suitable set of longitudinal composite operators, we must take account
of the fact that, whereas the velocity difference v+ − v−, and, hence, Sn(r), is dominated



4392 M J Giles

by motions of scale r , and, thus, can be expected to display universal features, when r is in
the inertial range, the same is not true of the velocities v± themselves, because, relative to
the laboratory frame, they include contributions from the large-scale eddies. These must be
eliminated, which can be accomplished by referring the flow to a frame moving with the local
velocity U of the large-scale eddies, as discussed fully in section 7. Here, our aim is to limit
the composite operators that need to be allowed for to those which appear explicitly in the
definition of Sn(r), as given in (1). Indeed, rewriting (1) in the form

Sn(r) = 〈{(v+ − U1)− (v− − U1)}n
〉

leads one to define a set of longitudinal Galilean invariant composite operators Os(x̂), for
s = 2, 3, 4, . . . , relative to the laboratory frame, by

Os(x̂|f) = [V1(x̂|f)− U1]s/s! (9)

which we generate from W by adding to the source term (8), the additional term

−
∑

s

∫
ts(x̂)Os(x̂|f) dx̂. (10)

We also need to include in the definition of W a means of establishing the vital link
between the time-independent definition of Sn(r) and the dynamics of the turbulence. This
requires the introduction of a dynamic response operator, which we define to be the functional
differentiation operator

Fα(x̂) = δ

iδfα(x̂)
. (11)

Its inclusion in the definition of W adds a final source term to S, given by∫
Jα(x̂)Fα(x̂) dx̂ (12)

where summation over repeated vector indices is implied here and below.
The terms (8), (10) and (12) together constitute the full source term for (7) which becomes,

therefore,

S(J, J̃, ts) =
∫ {

Jα(x̂)Vα(x̂|f) + J̃α(x̂)Fα(x̂)−
∑

s

ts(x̂)Os(x̂|f)
}

dx̂ (13)

and this completes the definition of W . Thus, (7) and (13) provide the foundation of our
approach to the calculation of ζn. However, before we can proceed with this calculation, we
must cast W into a conventional field theory form, and introduce the modified quadratic form.

A straightforward method of transforming (7) into a conventional field theory form is to
replace P(f) by its functional Fourier transform and then integrate over f . This is the stage
at which we make explicit use of the NS equations. Essentially, to effect the transformation,
we change our perspective by replacing the velocity field V (f) generated by the force f , by
the force F (v) needed to excite a particular realization v of the flow field. The operator (11)
is then replaced by an equivalent conjugate vector field ṽ.

To carry out this transformation, we work in the Fourier domain setting

v(x̂) =
∫

exp(ik̂ · x̂) v(k̂)Dk̂

where k̂ denotes (k, ω), so that k̂ · x̂ = ωt − k · x, while Dk̂ = dω dk/(2π)4. Then, from (4)
and (5), we have

Fα(k̂, v) = G0(k̂)
−1vα(k̂)− i

2
(2π)4Pαβγ (k)

∫
vβ(p̂)vγ (q̂)δ(p̂ + q̂ − k̂)Dp̂Dq̂. (14)
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The notation here is the following. G0(k̂) is the zero-order approximation to the response
function G(k̂) defined below in (70) and (71), namely

G0(k̂) = 1

iω + τν(k)−1
(15)

where

τν(k)
−1 = ν̄k2.

Pαβγ (k) is the NS vertex defined by

Pαβγ (k) = kβPαγ (k) + kγ Pαβ(k) (16)

where

Pαβ(k) = δαβ − kαkβ/k
2. (17)

Next we write the Gaussian distribution of f in the form

P(f) = N exp

{
− 1

2

∫
fα(−k̂)h(k)−1Pαβ(k)fβ(k̂)Dk̂

}
(18)

for which the corresponding force covariance is〈
fα(k̂)fβ(l̂)

〉 = (2π)4δ(k̂ + l̂)h(k)Pαβ(k)

where the force spectrum function h(k) is an arbitrary function which is assumed to be peaked
near the origin, so that the power input

∫
h(k) dk is finite. Otherwise, we make no specific

assumptions regarding the form of h(k). We now change the functional integration over f

in (7) to an integration over v by means of the transformation v(k̂) = V (k̂|f), and substitute
the representation

P(f) = N
∫

exp

{
− 1

2

∫
ṽα(−k̂)h(k)Pαβ(k)ṽβ(k̂)Dk̂ + i

∫
ṽα(−k̂)fα(k̂)Dk̂

}
Dṽ. (19)

Since the Jacobian only contributes an unimportant constant, we get

W(J, J̃, ts) =
∫

exp
[− L(v, ṽ) + S(J, J̃, ts)

]Dv Dṽ (20)

where

L(v, ṽ) = 1
2

∫
ṽα(−k̂)h(k)Pαβ(k)ṽβ(k̂)Dk̂ − i

∫
ṽα(−k̂)Fα(k̂, v)Dk̂ (21)

while the source term (13) becomes

S(J, J̃, ts) =
∫ {

Jα(−k̂)vα(k̂) + J̃α(−k̂)ṽα(k̂)−
∑

s

ts(−k̂)Os(k̂)

}
Dk̂ (22)

where Os(k̂) is the Fourier transform of

Os(x̂) = [
v1(x̂)− U1

]s/
s!. (23)

The expression (20) casts W into the form of an MSR-type functional integral [9].
Now the quadratic form appearing in (21) does not provide a good initial approximation for

inertial range scaling, because, of course, it merely describes the viscous decay of an externally
driven random flow, with no account taken of the nonlinear interactions. It is thus essential
in developing an expansion theorem for (20) to introduce a more appropriate quadratic form.
Here, we can appeal to the general theory of quadratic forms in a Hilbert space which indicates
that we can introduce at most two functions.These can be taken as an apparent force spectrum
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D0(k) and an effective micro-timescale τ0(k), which are related to the energy in wavemode k,
Q(k), by

Q(k) = 1
2τ0(k)D0(k). (24)

The modified quadratic form in L(v, ṽ) is then obtained, firstly, by replacing h(k) with D0(k)

and, secondly, by replacing the viscous timescale τν(k) by the the effective timescale τ0(k), so
that the viscous propagator (15) in (14) is replaced by

G0(k̂) = 1

iω + τ0(k)−1
. (25)

Thus, we now have in place of (21)

L(v, ṽ) = 1
2

∫
ṽα(−k̂)D0(k)Pαβ(k)ṽβ(k̂)Dk̂ − i

∫
ṽα(−k̂)Fα(k̂, v)Dk̂ (26)

in which D0(k) and τ0(k) are, as yet, unknown functions to be determined later from a
solvability condition associated with the energy equation and the linear response function.
The idea that one should replace the viscous quadratic form by a modified form was suggested
originally in [10], where it was used in conjunction with a variational principle based on an
entropy functional, but recent work [11] has shown that this approach contains an arbitrary
element. However, we shall not need to invoke any additional principle, because we shall be
able to deduce the modified quadratic form in a self-consistent way from the 1-loop expansion,
as we have already indicated.

The introduction of the modified quadratic form as a basis for an expansion theorem
for (20) requires the inclusion of the difference terms as perturbations, which contributes an
additional term to L given by

,L0 = 1
2

∫
ṽα(−k̂){h(k)−D0(k)}Pαβ(k)ṽβ(k̂)Dk̂

− i
∫
ṽα(−k̂){τν(k)−1 − τ0(k)

−1}vα(k̂)Dk̂. (27)

These terms have the same form as the counterterms introduced below in (33) to accommodate
the pure logarithmic divergences but their role, as we shall see, is not critical as regards
calculating the inertial range exponents.

The derivation of the form of the functions D0(k) and τ0(k) occurring in the modified
quadratic form entails a detailed discussion of sweeping convection, the structure of the
Feynman diagrams associated with the loop expansion of W and the establishment of the
solvability condition for the absence from the linear response function of non-renormalizable
terms. We shall defer detailed discussion of these topics until sections 7 and 8 and, meanwhile,
proceed with the calculation of the anomalous exponents by anticipating their forms, which,
in the inertial range, are

D0(k) = D0k
−3 (28)

and

τ0(k)
−1 = ν0k

2/3. (29)

Clearly, these forms imply that the zero-order solution behaves in the inertial range as if the
fluid were stirred by a random force with a k−3 force correlation spectrum, to which it responds
with a Lagrangian timescale ∝k−2/3, even though the actual force spectrum h(k) is an arbitrary
function which is peaked near k = 0. Thus, they lead to the Kolmogorov distribution. We shall
explain how this result follows from the generating functional in section 8. The advantage of
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this approximation is that it achieves a prime requirement of any efficient perturbation theory,
which is a zero-order approximation that already closely approximates the desired solution.

On the other hand, as we have indicated, the resulting perturbation theory yields
divergences at higher orders. But we shall find that, provided the flow is referred to a frame
moving with the local velocity U of the large-scale eddies, these divergences can be handled
by standard renormalization procedures. Thus, all calculations will be referred to this moving
frame. As we will show in section 7, the effect of this change of frame, is to introduce an
additional sweeping interaction term into L given by

,Ls = 3

4

gν3

τ(κ)

∫
l · m ṽ(m̂) · v(−m̂)ṽ(l̂) · v(−l̂)Dl̂ Dm̂ (30)

which cancels the contributions to the probability associated with the sweeping convection
generated by the NS vertex. In particular, it eliminates the power divergences which, as
indicated above, arise from the kinematic effect of the sweeping of small scales by larger
scales. So (30) provides a means of regularizing the theory apart from the pure logarithmic
divergences, which we can sum by renormalization group methods to obtain ζn. The structure
functions (1) are, of course, invariant under this change of frame, while (23) becomes

Os(x̂) = v1(x̂)
s/s! (31)

so that

Os(k̂) = v1(k̂)
s/s!

where v1(k̂)
s denotes the Fourier transform of v1(x̂)

s . For ease of notation, we do not
distinguish between v and ṽ before and after the Galilean transformation. As all calculations
are to be carried out in the moving frame this should cause no confusion.

Thus, an important implication of using the modified quadratic form as an initial
approximation for the calculation of ζn is that renormalization becomes a necessary preliminary.
So we need to identify the counterterms which arise in W under renormalization and obtain
the transformation rule which connects the bare and renormalized generating functionals.
Renormalization is applied to the viscosity and force constants appearing in (28) and (29) in
the usual way by introducing renormalization constants Zν and ZD , which relate their bare
values ν0 and D0 to their renormalized replacements ν and D by

ν0 = νZν and D0 = DZD. (32)

This generates counterterms in (21) for the elementary fields (v and ṽ) given by

,Lef = −,Zν i
∫
ṽα(−k̂)τ (k)−1vα(k̂)Dk̂ + ,ZD 1

2

∫
ṽα(−k̂) D(k)Pαβ(k)ṽα(k̂)Dk̂ (33)

where we have defined renormalization constant increments by

,Zν,D = Zν,D − 1.

The additional renormalization which must be applied to the composite operators (31) also
takes the standard form

(Os)B = Zs(Os)R. (34)

The corresponding counterterm is obtained by substituting (34) in (22) to get

,Lco =
∑

s

,Zs

∫
ts(−k̂)Os(k̂)Dk̂

where

,Zs = Zs − 1.
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We conclude this section by giving the transformation which relates the generating
functional of the bare correlation functions WB to its corresponding renormalized form WR.
To provide a convenient means of handling the dependence of the correlation and response
functions on the dimensional parameters ν0 and D0, we rescale V and f by introducing bare
fields defined by

V (k̂) =
(
D0

ν3
0

)1
2

VB(k, ωB)

and

f(k̂) =
(
D0

ν0

)1
2

fB(k, ωB)

with bare frequency

ωB = ω

ν0
.

These bare fields preserve the form of the NS equations, apart from explicitly introducing the
non-dimensional coupling constant, defined by

g0 = D0

6π2ν3
0

(35)

in which the appropriateness of the numerical factor will appear later from the loop-expansion
of W .

Under the renormalization (32), the bare fields are replaced by renormalized fields, to
which they are related by

VB(k, ωB) =
(
Z3
ν

ZD

)1
2

VR(k, ωR)

and

fB(k, ωB) =
(
Zν

ZD

)1
2

fR(k, ωR)

where

ωR = ω

ν
.

These relations follow from two requirements. First, the form of the NS equations (14) must
again be preserved, with the new constants ν and D resulting in a renormalized coupling
constant

g = D

6π2ν3
. (36)

Second, we have to satisfy the crucial requirement that P(f), as given in (18), remains invariant
under renormalization. Indeed, satisfaction of these conditions implies the desired relation
between WB and WR, which from (20) and (22), is readily found to be

WR(J, J̃, ts) = WB

(
1

Zν

(
ZD

Zν

)1/2

J,
1

Zυ

(
Zυ

ZD

)1/2

J̃,
Zs

Zs
ν

(
ZD

Zν

)s/2
ts

)
. (37)

The foregoing provides the basis of our calculation of ζn, which involves the following
four stages, all of which are carried out relative to the moving frame. First, we use (37) and the
binomial expansion of (1) to develop a short distance expansion for Sn(r), by substituting an
operator product expansion (OPE) [7,8] for each term, based on the operators (31) applying in
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the moving frame. As shown in section 3, this yields the scaling of Sn(r) in terms of uv fixed
point values of standard RG functions. The second stage of the calculation is to demonstrate
that the required uv fixed point of the RG actually exists, and then to deduce the corresponding
fixed point coupling constant g∗. This is done in section 4 by considering the renormalization of
the linear response function, using the renormalized functional in the form obtained from (25)
and (26). The third stage is to calculate the specific fixed point RG parameters which give
the anomalous component of ζn. To do this, we have to consider the renormalization of
appropriate nonlinear Green functions involving the composite operators defined in (31).
These are identified and evaluated in section 5. Having calculated the anomalous scaling
exponent −τnp of the pth term in the binomial expansion of Sn(r), in the fourth and final
stage of the calculation, we derive a simple algebraic expression for ζn by maximizing τnp,
with respect to integer values of p, and subtracting this maximum from the Kolmogorov
value (3). The results obtained for ζn are presented in section 6, where they are shown to
be in good agreement with experimental measurements at all orders for which reliable data
exists. Finally, the mathematical proofs, deferred during the calculation of the exponents,
are presented in sections 7–9, and comprise: (a) the demonstration that sweeping effects can
be eliminated by means of the random Galilean transformation of the velocity field; (b) the
derivation of the modified quadratic form from the 1-loop expansion; and (c) the derivation of
the dominant terms of the OPEs.

3. The structure function expansions

In applying the OPE technique to (1) the first point to appreciate is that the orders n = 2, 3
and �4 require separate treatment. The factor distinguishing S2 and S3 from the higher-order
Sn is that the latter involve composite operator products, whereas S2 and S3 do not. Also, S3 is
exceptional in representing a transition at which corrections to the Kolmogorov exponents (3)
change from positive at n = 2 to negative at n � 4, with no correction occurring at n = 3 in
accordance with the known exact scaling law, which is verified, within the present framework,
in section 8. This sign change is caused precisely because composite operator products appear
in Sn when n � 4.

We begin, therefore, with the relatively straightforward case of S2. According to (1), we
have

S2(r) = 2
(〈

v2
〉− 〈

v+v−
〉)

(38)

which shows that the scaling of S2 is determined by the behaviour of the operator product v+v−
as r → 0. The form of its OPE is established in section 9 after the necessary mathematical
apparatus has been set up. Its proof is given there to the accuracy of the calculation, ie up to
and including terms of order g2. We shall show that, in the moving frame, the operators which
appear in its OPE are: (a) the unit operator I , with constant coefficient E/3, where E is the
turbulence energy; (b) the dominant longitudinal quadratic composite operatorO2(x̂), as given
by (31), which gives the leading scaling behaviour; and (c) subdominant operators including all
transverse operators and the longitudinal higher-order composite operators Os(x̂). However,
we shall only be concerned with the dominant operators and so we write the expansion as

v+v− = 1
3EI + C2(r)O2(x̂) + · · · (39)

where the dots indicate the additional subdominant terms. The scaling behaviour of this
operator product can be found in the usual way from the RG equation satisfied by the leading
Wilson coefficient C2(r) [12].

We start by considering an arbitrary equal time correlation function of order l, given by

Hα1...αl (x̂1, . . . , x̂l) = 〈
vα1(x̂1) . . . vαl (x̂l)

〉
. (40)
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If we insert (39) into this correlation function, we get

Hα1...αl

(
x̂1, . . . , x̂l, x̂ +

r

2
ı̂, x̂ − r

2
ı̂
)

= E

3
Hα1...αl (x̂1, . . . , x̂l)

+C2(r)Q
(2)
α1...αl

(x̂1, . . . , x̂l, x̂) + · · · (41)

where, in general, Q(s)
α1...αl

is the inserted correlation function defined by

Q(s)
α1...αl

(
x̂1, . . . , x̂l, x̂

) = 〈
vα1(x̂1) . . . vαl (x̂l)Os(x̂)

〉
(42)

and ı̂ is a unit vector along the x-axis.
We can deduce the RG equation satisfied by the Wilson coefficient C2 in (39) from (41),

given the RG equations satisfied by Hα1...αl and Q(2)
α1...αl

. To obtain the latter, we need the
transformation rule for the equal time generator of these correlation functions, which we
denote by W(e)(J, ts). This follows in a straightforward manner by taking time-independent
sources in (37), and integrating with respect to ωB and ωR, with the J̃ dependence, which
is irrelevant here, suppressed. To simplify the result, we shall anticipate the fact, which we
demonstrate in section 4, that

ZD = Zν. (43)

We then get

W
(e)
R (J, ts) = W

(e)
B (J, Zsts) . (44)

According to this relation, the bare and renormalized forms of Hα1...αl are equal. Hence,
when we change the renormalization scale, which we denote by µ, the Fourier transform of
Hα1...αl changes according to the RG equation [12]

DHα1...αl = 0 (45)

where D is the standard RG operator defined by

D = µ
∂

∂µ
+ β(g)

∂

∂g
(46)

with

β(g) = µ
dg

dµ
. (47)

In the case of Q(s)
α1...αl

, we obtain from (42) and (44) the relation

(Q(s)
α1...αl

)R = Zs(Q
(s)
α1...αl

)B

which leads to the RG equation

DQ(s)
α1...αl

= γsQ
(s)
α1...αl

(48)

where γs is the anomalous dimension of Os given by

γs = µ
d

dµ
logZs. (49)

For ease of notation, we have dropped the suffix R in the RG equations (45) and (48), since
we shall always be dealing with relations between renormalized functions.

We now apply the RG operator (46) to the Fourier transform of (41), and make use of (45)
and (48), to get

0 = (DC2 + γ2C2)Q
(2)
α1...αl

+ · · · . (50)

As this equation holds for arbitrary Q(2)
α1...αl

, it follows that

DC2 = −γ2C2 (51)
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which is the RG equation satisfied by the Wilson coefficients in (39).
The standard solution of this equation, corresponding to an uv fixed point [12], now gives

for the leading term of (39) the scaling behaviour

C2(r) ∼ r2/3−γ ∗
2 (52)

where the star denotes the fixed point value of (49). This result, in conjunction with (38)
and (39), yields the scaling exponent for S2(r), namely

ζ2 = 2
3 + ,2 (53)

where

,2 = −γ ∗
2 . (54)

We shall calculate ,2 in section 5.
Consider now the general case for even orders n = 2m > 2. Introducing the general

composite operator product

:ss′(x̂, r) = Os

(
x̂ +

r

2
ı̂
)
Os′

(
x̂ − r

2
ı̂
)

(55)

and taking advantage of the isotropic symmetry, we can write the binomial expansion of (1) as

Sn (r) = n!

〈
2
m−1∑
p=0

(−)p :n−p,p(x̂, r) + (−)m :m,m(x̂, r)

〉
. (56)

We can identify the dominant term of the OPE of :n−p,p by factoring out the product
(v+v−)p and using the fact that, by (39), its expansion begins with the unit operator. We will
justify this process in section 9. This implies that the OPE of :n−p,p itself takes the form

:n−p,p(x̂, r) = Cp,m−p(r)O2(m−p)(x̂) + · · · (57)

where again the dots indicate subdominant terms. Substituting (57) in (56), we get

Sn(r) = n!

{
2
m−1∑
p=0

(−)pCp,m−p(r)
〈
O2(m−p)(x̂)

〉
+ (−)mCm,m(r)

}
+ · · · (58)

the averages of the composite operators being independent of x̂ for homogeneous isotropic
turbulence. To find ζn from this expansion, we have to determine which term or terms on the
right-hand side yield the negative correction of maximum magnitude to ζKol

n . As before, this
is deduced from the RG equation for the Wilson coefficient Cp,s , which we derive next.

We begin by inserting (55) into the general correlation function (40) to obtain the general
inserted correlation function

R(ss ′)
α1...αl

(x̂1, . . . , x̂l, x̂ + 1
2 rı̂, x̂ − 1

2 rı̂) = 〈
vα1(x̂1) . . . vαl (x̂l):ss′(x̂, r)

〉
. (59)

According to (44) its bare and renormalized forms are connected by the relation(
R(ss ′)
α1...αl

)
R = ZsZs′

(
R(ss ′)
α1...αl

)
B

from which it follows that R(ss ′)
α1...αl

satisfies the RG equation

DR(ss ′)
α1...αl

= (γs + γs′) R(ss ′)
α1...αl

. (60)

Next, we insert the expansion (57) into the general correlation function (40), and use the
definitions (42) and (59), to get

R(n−p,p)
α1...αl

(
x̂1, . . . , x̂l, x̂ +

r

2
ı̂, x̂ − r

2
ı̂
)

= Cp,m−p (r)Q(2s)
α1...αl

(
x̂1, . . . , x̂l, x̂

)
.
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We then apply the RG operator (46) to the Fourier transform of this equation, and substitute (48)
and (60) to obtain

Q2(m−p)
α1...αl

{DCp,m−p +
(
γ2(m−p) − γp − γn−p

)
Cp,m−p

}
+ · · · = 0

from which it follows that

DCp,m−p = − (γ2(m−p) − γp − γn−p
)
Cp,m−p. (61)

We now invoke the standard solution of (61), applicable at the uv fixed point [12], to
obtain the scaling relation

Cp,m−p(r) ∼ rn/3−τnp (62)

where

τnp = γ ∗
2(m−p) − γ ∗

p − γ ∗
n−p. (63)

Upon substituting (62) in (58), it is immediately evident that the scaling exponent of Sn(r) is
given by

ζn = n

3
− τn (64)

where

τn = max
p
τnp for n = 2m > 2. (65)

Once γ ∗
s has been evaluated from (49), at the fixed point, which we do in section 5, it is a

simple matter to evaluate τn, as we show in section 6.
Odd orders with n = 2m+1 > 3 may be treated similarly with minor adjustments to allow

for the fact that the expansions involve odd powers. In this case, however, it is immediately
evident that the dominant scaling must arise from the Wilson coefficient of the unit operator
corresponding to p = m, because averaging wipes out other terms by virtue of the fact that〈
O2s+1

〉 = 0. Hence, we obtain

τn = − (γ ∗
m + γ ∗

m+1

)
for n = 2m + 1 > 3. (66)

Again, the justification of the relevant expansions is given in section 9.

4. The linear response

In order to evaluate τn, we have to establish that an uv fixed point exists, which entails showing
that the RG β function (47) possesses a zero

β(g∗) = 0 (67)

at which

dβ

dg
< 0. (68)

To do this we must first determine the dependence of the renormalization constants Zν and
ZD on the renormalization scale µ. We will then verify that (43) holds and use this fact to
calculate g∗ from Zν .
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4.1. Evaluation of Zν

According to the general theory of renormalization [13], the renormalization constant Zν has
an expansion of the form

Zν = 1 + g a1ν log
(µ
κ

)
+ g2

{
a2

1ν

2
log2

(µ
κ

)
+ a2ν log

(µ
κ

)}
+ · · · . (69)

Here κ is the wavenumber cut-off which provides the intermediate regulation of the divergent
integrals. In the present case, this is an ir wavenumber of the order of L−1, where L is the
typical length scale of the large scale flow. Divergences arise in the limit κ → 0, corresponding
to the inertial range limit r/L → 0. The constants a1ν and a2ν will be calculated by eliminating
the logarithmic divergences, at 1 and 2-loop orders respectively, from the 1PI Green function
>αβ(k̂, l̂), which is the inverse of the Fourier transformGαβ(k̂, l̂) of the linear response function

Gαβ

(
x̂, x̂ ′) =

〈
δvα

(
x̂
)

δfβ
(
x̂ ′)
〉
. (70)

>αβ , and the other 1PI functions that we shall require, are generated from the functionalK ,
which is obtained in the usual way by performing a Legendre transformation on Wc = logW ,
with respect to the sources of the elementary fields, J and J̃ , while holding the composite
operator sources ts fixed [7, 14]. The new source fields for K are therefore given by

u(k̂) = (2π)4
δWc

iδJ(−k̂)
and

ũ(k̂) = (2π)4
δWc

iδJ̃(−k̂)
with K itself given in terms of its source fields by

K(u, ũ, ts) = −Wc + i
∫ {

J(−k̂) · u(k̂) + J̃(−k̂) · ũ(k̂)
}

Dk̂.

It follows, therefore, that

>αβ(k̂, l̂) = (2π)8
δ2K

iδũα(k̂)δuβ(l̂)
.

Introduction of the reduced forms

Gαβ(k̂, l̂) = (2π)4δ(k̂ + l̂)Pαβ(k)G(k̂) (71)

and

>αβ(k̂, l̂) = (2π)4δ(k̂ + l̂)Pαβ(k)>(k̂)

then leads to the standard relation

>(k̂) = G(k̂)−1. (72)

We can now use (37) to show that the connection between the bare and renormalized forms is

>R = Zν>B (73)

which demonstrates the suitability of >(k̂) as a basis for determining Zν .
In carrying out the renormalization of >(k̂) to obtain the coefficients in (69), we choose

the normalization point to be k̂ = m̂, where

m̂ = (m, ωm = 0).
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Figure 1. Components of the diagrams: (i) velocity correlator; (ii) linear response function; (iii) NS
vertex; (iv) composite operator Os vertex.

Here m is a fixed vector having a magnitude equal to the renormalization scale µ:

|m| = µ.

Since µ � κ , we have

m � κ. (74)

The direction of m need not be specified, because the geometrical factor is contained inPαβ(m)

which cancels off. The expansion (69) is used in conjunction with a normalisation condition
that sets >(m̂) equal to its tree level value. Thus, from (25) and (72), we have

>(m̂) = >0(m̂) = G0(m̂)
−1 = τ(µ)−1 (75)

and so the 1-loop term satisfies the normalisation condition

>1(m̂) = 0. (76)

The Feynman diagram giving the 1-loop term of >αβ(m̂) generated by the NS vertex, as
given by (20) and (26), is shown in figure 3(i). The standard rules apply to such diagrams with
the following assignments, which are shown in figure 1:

(1) External lines represent functional differentiation with respect to u(k̂) when continuous,
and ũ(k̂), when dotted.The diagram is divided by a factor of i for each differentiation with
respect to ũ.

(2) A continuous line linking two vertices denotes the reduced velocity correlation function
defined through〈

vα(k̂)vβ(l̂)
〉 = (2π)4δ(k̂ + l̂)Qαβ(k̂)
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and given by

Qαβ(k̂) = D(k)
∣∣G(k̂)∣∣2Pαβ (k) (77)

= D(k)

ω2 + σ(k)2
Pαβ(k) (78)

in which it is convenient to employ the inverse timescale defined by

σ(k) = τ(k)−1 = νk2/3. (79)

Also, for ease of notation, we omit zero-order labels in writing down mathematical
expressions for the diagrams.

(3) A half dotted/half continuous line connecting two vertices represents i times the zero-order
response function

Gαβ(k̂) = G(k̂)Pαβ (k) (80)

= 1

iω + σ(k)
Pαβ(k). (81)

(4) The NS vertex with one dotted and two continuous lines represents −Pαβγ (k), the vector
index α and k being associated with the dotted leg, with k directed away from the node.

Returning now to the 1-loop diagram for >αβ(m̂), we note that it has a symmetry factor
of 1. Hence, it yields a contribution to >1(m̂) given by

Pαβ(m)>
(1)
1 (m̂) =

∫
Pαγ δ(m)Pλνβ(m − p)Gγλ(m̂− p̂)Qδν(p̂)Dp̂.

Substituting the zero-order correlator (78) and propagator (81) yields

>
(1)
1 (m̂) = 1

2

∫
A(m,p)D(p)I (m,p)Dp (82)

where

I (m,p) = 1

2π

∫
dD

[−iD + σ(|m − p|)][D2 + σ(p)2]

and

A(m,p) = Pαγ δ(m)Pλνα(m − p)Pγλ(m − p)Pδν(p).

We can extract the divergence from this integral by expanding its integrand in powers of
p/m. This is possible because it emanates from the region p ∼ κ , while from (74) κ � m.
The frequency integral I is elementary and, with the approximation |m − p| � m = µ, yields
to lowest order

I (m,p) = 1

2σ(p)[σ(p) + σ(µ)]
. (83)

A(m,p) is now the only factor in (82) depending on the direction of p. Hence, the integration
over the solid angle in (82), together with the approximation |m − p| � m, yields the factor∫

A(m,p) dop = Pαγ δ(m)Pλνα(m)Pγλ(m)

∫
Pδν(p) dop

= 8π

3
Pαγ δ(m)Pλδα(m)Pγλ(m)

= 16πm2

3
= 16πµ2

3
(84)

where we have used the definitions (16) and (17).
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Substituting (28), (83), and (84) in (82), and using the definitions (36) and (79), leads to

>
(1)
1 (m̂) = gσ(k)3

∫
p>κ

dp

pσ(p)[σ(p) + σ(µ)]
.

Next we change from an integration over wavenumber p to an integration over the non-
dimensional variable x defined by

x = σ(p)

σ(µ)
. (85)

After making use of (79), we obtain

>
(1)
1 (m̂) = 3

2gτ(µ)
−1I0(ε) (86)

where

I0(ε) =
∫ ∞

ε

dx

x2(x + 1)
(87)

in which the lower limit of integration is

ε = τ(µ)

τ(κ)
. (88)

Evaluation of (87) is trivial and yields the divergent terms

I0(ε) = log ε +
1

ε
(89)

giving

>
(1)
1 (m̂) = 3

2

g

τ(µ)
log ε +

3

2

g

τ(µ)

1

ε
. (90)

To this we must add the contributions from the sweeping interaction term (30) and the
counterterm (33). In section 7, we will show that the 1-loop term arising from the sweeping
interaction cancels the power divergence in (90), and so this term may be omitted from>

(1)
1 (m̂).

This leaves the logarithmic divergence which, on making use of (88) and (79), becomes

>
(1)
1 (m̂) = −τ(µ)−1g log

(µ
κ

)
. (91)

The counterterm vertex shown in figure 2(i) contributes the term Pαβ (m) >
(2)
1 (m̂) where

>
(2)
1 (m̂) = ,Zντ(µ)

−1 = a1ντ (µ)
−1 g log

(µ
κ

)
. (92)

But, from the normalization condition (76), we have

>
(1)
1 (m̂) + >(2)1 (m̂) = 0

which, upon substituting (91) and (92), yields

a1ν = 1. (93)

The other constant in (69), a2ν , is obtained from the 2-loop term of >αβ(m̂), namely
Pαβ(m)>2(m̂). At the normalization point it must satisfy the condition

>2(m̂) = 0 (94)

by virtue of (76). There are nine possible Feynman diagrams for >αβ(m̂) containing two loops.
But, for reasons discussed fully below, only two of them yield divergences after integration
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Figure 2. Counterterm vertices associated with the renormalization of the elementary fields and
the composite operators.
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Figure 3. The 1PI Feynman diagrams evaluated in section 4 for (i) >1, (ii) G1, (iii) and (iv) >2.

over the solid angles. They are shown in figures 3(iii) and (iv). Their symmetry factors are 1
and they contribute the terms

Pαβ(m)>
(1)
2 (m̂) = −

∫
Dp̂Dq̂ Qδε(p̂)Qλρ(q̂)

×Gκγ (m̂− p̂)Gνσ (m̂− p̂ − q̂)Gτµ(m̂− p̂)

×Pαγ δ(m)Pµβε(m − p)Pκλν(m − p)Pσρτ (m − p − q) (95)

and

Pαβ(m)>
(2)
2 (m̂) = −

∫
Dp̂Dq̂ Qδσ (p̂)Qλµ(q̂)

×Gκγ (m̂− p̂)GJν(m̂− p̂ − q̂)Gετ (m̂− q̂) (96)

×Pαγ δ(m)Pεµβ(m − q)Pκλν(m − p)PJστ (m − p − q). (97)
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Evaluation of these 2-loop integrals proceeds essentially as just described for the 1-loop
case. Consider first (95). Substitution of (78) and (81) gives

>
(1)
2 (m̂) = − 1

2

∫
A(m,p, q)D(p)D(q)I (m,p, q)Dp Dq (98)

where

A(m,p, q) = Pαγ δ(m)Pγλν(m − p)Pνρτ (m − p − q)Pταε(m − p)Pδε(p)Pλρ(q)

and where I is the double frequency integral given by

I (m,p, q) = 1

(2π)2

∫ ∣∣G(p̂)G(q̂)∣∣2 G(m̂− p̂)2G(m̂− p̂ − q̂) dDp dDq. (99)

We extract the divergences from (98), by expanding its integrand in powers of both p/m
and q/m. Substituting (81) in (99), and using the approximations |m − p| � m = µ,
|m − q| � m = µ and |m − p − q| � m = µ, we get

I (m,p, q) = 1

(2π)2

∫
dDp dDq

[D2
p + σ(p)2][D2

q + σ(q)2][−iDp + σ(µ)]2[−i(Dp + Dq) + σ(µ)]

yielding

I (m,p, q) = 1

4σ(p)σ(q)[σ(p) + σ(µ)]2[σ(p) + σ(q) + σ(µ)]
. (100)

Integration over the solid angles in (98) now involves only A(m,p, q) and yields the factor∫
A(m,p, q) dop doq = Pαγ δ(m)Pγλν(m)Pνρτ (m)Pταε(m)

∫
Pδε(p)Pλρ(q) dop doq

= 2

(
8πµ2

3

)2

. (101)

Substituting (28), (100) and (101), in (98), and using (36) and (79), we obtain, to lowest order,

>
(1)
2 (m̂) = −g2σ(µ)6

∫
p,q>κ

dp dq

pqσ(p)σ(q)[σ(p) + σ(µ)]2[σ(p) + σ(q) + σ(µ)]
.

Next, we change to non-dimensional variables of integration defined by

x = σ(p)

σ(µ)
and y = σ(q)

σ (µ)
(102)

to get

>
(1)
2 (m̂) = − 9

4g
2τ(µ)−1I1 (ε) (103)

where

I1 (ε) =
∫ ∞

ε

∫ ∞

ε

1

x2y2 (1 + x)2 (1 + x + y)
dx dy. (104)

Extracting the divergent terms from this integral for small ε now gives

I1(ε) = I
(l)
1 (ε) + I (p)1 (ε) (105)

where I (l)1 consists of the purely logarithmic divergences

I
(l)
1 (ε) = 16

3 log ε + 4 log2 ε

while I (p)1 comprises the power divergences

I
(p)

1 (ε) = 1

ε2
+

5

2

1

ε
+

4

ε
log ε. (106)
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As with the 1-loop term, it will be shown in section 7 that I (p)1 is exactly cancelled by the
corresponding 2-loop terms arising from the sweeping interaction (30). So we can omit I (p)1
from I1. Furthermore, for the calculation of the coefficient a2ν in (69), we require only the
singly logarithmic divergence, as in standard renormalization calculations [8]. So we can also
remove the log2 term from I

(l)
1 . Thus, we are left finally with

I1(ε) = 16
3 log ε

and (103) yields

>
(1)
2 (m̂) = 8g2τ(µ)−1 log

(µ
κ

)
(107)

where we have used (79).
Similarly, for >(2)2 (m̂), we get from (97)

>
(2)
2 (m̂) = − 1

2

∫
A(m,p, q)D(p)D(q)I (m,p, q)Dp Dq

where

A(m,p, q) = Pαβγ (m)Pγλµ(m − p)Pτνα(m − p)Pµστ (m − p − q)Pβσ (p)Pλν(q)

and

I (m,p, q) = 1

(2π)2

∫ ∣∣G(p̂)G(q̂)∣∣2 G(m̂− p̂)G(m̂− q̂)G(m̂− p̂ − q̂) dDp dDq.

Using the approximation p, q � m as before, we find that the result (101) again applies to the
angular integrations, while the frequency integral yields

I (m,p, q) = 1

4σ(p)σ(q)[σ(p) + σ(µ)][σ(q) + σ(µ)][σ(p) + σ(q) + σ(µ)]

leading to

>
(2)
2 (m̂)= − g2σ(µ)6

∫
p,q>κ

dp dq

pqσ(p)σ(q)[σ(p)+σ(µ)][σ(q) + σ(µ)][σ(p)+σ(q) + σ(µ)]
.

Changing to the non-dimensional variables (102) now gives

>
(2)
2 (m̂) = − 9

4g
2τ(µ)−1I2 (ε) (108)

where

I2 (ε) =
∫ ∞

ε

∫ ∞

ε

dx dy

x2y2 (1 + x) (1 + y) (1 + x + y)
. (109)

Extraction of the divergent terms in this case yields

I2(ε) = I
(l)
2 (ε) + I (p)2 (ε) (110)

where

I
(l)
2 (ε) = 7 log ε + 5 log2 ε

and

I
(p)

2 (ε) = 1

ε2
+

2

ε
+

4

ε
log ε. (111)

Again, we will show in section 7 that the power divergences are exactly cancelled by the
corresponding 2-loop terms arising from the sweeping interaction (30). So we can omit I (p)2
from I2. Since we need only retain the singly logarithmic divergence for the calculation of
a2ν , we are left with

I2(ε) = 7 log ε
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and (108) yields

>
(2)
2 (m̂) = 21

2
τ(µ)−1g2 log

(µ
κ

)
. (112)

To the two contributions (107) and (112) to >2(m̂), we must add the counterterm, which,
by analogy with (92), takes the form

>
(3)
2 (m̂) = a2νg

2τ(µ)−1 log
(µ
κ

)
. (113)

Thus, the normalization condition (94) becomes

>
(1)
2 (m̂) + >(2)2 (m̂) + >(3)2 (m̂) = 0.

Substitution of (107), (112) and (113) in this condition now yields

a2ν = − 37
2 . (114)

Note from (85) and (110) that the sum of the 2-loop divergences is

I1 + I2 = 37

2
log ε + 9 log2 ε +

9

2

1

ε
+

2

ε2
+ 8

log ε

ε
. (115)

Finally, we explain why the 2-loop topologies, which have been discarded in calculating>,
do not contribute to a2ν . As we shall explain further in section 7, divergences arise in these
diagrams when it is possible for one or more soft wavevectors (i.e. values ofp and/or q � m) to
flow through a correlator. However, if this entails the flow of some or all of these wavevectors
through the active (i.e. dotted) leg of the NS vertex, then the logarithmic divergence will be
suppressed by the extra powers of p and/or q. In the case of the 2-loop diagrams which
we have just calculated, the external hard wavevector m̂ flows through the active legs of all
vertices, so no suppression occurs. However, in the case of the remaining topologies, at least
one soft wavevector flowing through a correlator must also flow through the active leg of a NS
vertex. For the four remaining 2-loop topologies containing vertex corrections, the divergence
is suppressed individually for each diagram, after integration over the solid angles. For the
three remaining 2-loop diagrams containing insertions of the 1-loop diagrams (i) and (ii) of
figure 3, suppression results after integrating over the solid angles and summing over the
diagrams, the overall cancellation being related to the fact that the coefficients a1ν and a1D

associated with the two types of insertion are equal, as we show shortly. Likewise the four
1-loop diagrams containing the counterterm vertices yield no net contribution to a2ν , although
they do contribute a log2(ε) term to Zν , such that the overall coefficient of its log2(ε) term is
as determined by the 1-loop expansion, in accordance with (69).

4.2. Evaluation of ZD

The calculation of the renormalization constant ZD proceeds along similar lines to the
calculations just described for Zν , although the detail is substantially different. The expansion
of ZD , of course, takes the same form as (69), namely

ZD = 1 + g a1D log
(µ
κ

)
+ g2

{
a2

1D

2
log2

(µ
κ

)
+ a2D log

(µ
κ

)}
+ · · · . (116)

We shall show that a1D = a1ν and a2D = a2ν , thereby verifying that the condition (43) is
satisfied to 2-loop order.

Here the relevant 1PI function is the correlation function given by

Gαβ(k̂, l̂) = (2π)8
δ2K

iδũαiδũβ
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which is readily shown to be related to the velocity correlation function Qαβ(k̂, l̂) by [14]

Gαβ(k̂, l̂) =
∫
>αλ(k̂, p̂)>βµ(l̂, q̂)Qλµ(p̂, q̂) dp̂ dq̂.

Substituting the reduced forms

Gαβ(k̂, l̂) = (2π)4δ(k̂ + l̂)Pαβ(k)G(k̂)

and

Qαβ(k̂, l̂) = (2π)4δ(k̂ + l̂) Pαβ(k)Q(k̂)

we get

G(k̂) = ∣∣>(k̂)∣∣2Q(k̂).
From this result and (37) and (72), we find that the bare and renormalized forms of G are
related by

GR = ZDGB

which confirms that G(k̂) is the appropriate 1PI function to use for calculating ZD .
The normalization condition is again chosen to be consistent with the tree level

approximation, as implied in (116). That is, we set

G(m̂) = G0(m̂) = D (µ) (117)

so that the 1-loop term satisfies the normalization condition

G1(m̂) = 0. (118)

The 1-loop Feynman diagram for Gαβ(m̂) is shown in figure 3(ii). It has a symmetry
factor of 1/2, and makes a contribution to G1(m̂) which is given by

Pαβ(m)G
(1)
1 (m̂) = 1

2

∫
Pαγ δ(m)Pβλν(m)Qγλ(p̂)Qδν(m̂− p̂)Dp̂.

Substituting (78) yields

G
(1)
1 (m̂) = 1

4

∫
A(m,p)D(p)D(|m − p|)I (m,p)Dp (119)

where

I (m,p) = 1

2π

∫
dD

[D2 + σ(|m − p|)2][D2 + σ(p)2]

and

A(m,p) = Pαγ δ(m)Pαλν(m)Pγλ(p)Pδν(m − p).

The frequency integral can be carried out exactly to give

I (m,p) = 1

2σ(p)σ(|m − p|)[σ(p) + σ(|m − p|)] .

In extracting the logarithmic singularity from (119), we must take into account the fact that
the symmetry of the integrand results in singularities of equal strength at both p ∼ κ , and
|p − m| ∼ κ , the effect of which compensates for the symmetry factor. This follows by
re-writing (119) in the form

G
(1)
1 (m̂) = 1

4

∫
A(m,p)

1

D(p)−1 + D(|m − p|)−1
[D(p) + D(|m − p|)]I (m,p)Dp
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and then applying the transformation p → m − p to the second term between the braces.
Since both A(m,p) and I (m,p) are symmetric under this transformation, we get

G
(1)
1 (m̂) = 1

2

∫
A(m,p)

1

D(p)−1 + D(|m − p|)−1
D(p)I (m,p)Dp. (120)

In this latter form, the divergences arise only from the region p ∼ κ , and so we can evaluate
the integral by expanding its integrand in powers of p/m as before. In this approximation we
have

I (m,p) = 1

2σ(p)[σ(p) + σ(µ)]

and [
D(p)−1 + D(|m − p|)−1

]−1 � D(µ)

while the angular integration gives∫
A(m,p) dop = 8π

3
Pαγ δ(m)Pαγ ν(m)Pδν(m) = 16πµ2

3
.

Substituting these results in (120), and using (79) and (36), we obtain

G
(1)
1 (m̂) = D(µ)gσ(k)2

∫
p>κ

dp

pσ(p)[σ(p) + σ(µ)]

which, after changing to the non-dimensional variable (85), becomes

G
(1)
1 (m̂) = 3

2D(µ)gI0(ε) (121)

where I0 is the integral (87) obtained for >(1)1 (m̂).
It follows from (75), (86), (117) and (121) that the ratios of the divergences of the 1-loop

term to the tree level term for the two 1PI functions, from which ZD and Zν are calculated, are
equal at the normalization point and given by

G
(1)
1 (m̂)

G0(m̂)
= >

(1)
1 (m̂)

>0(m̂)
= 3

2
gI0(ε). (122)

Thus, they have identical divergences arising from the NS vertex. In particular, the coefficient
a1D in the expansion of ZD must equal the corresponding coefficient a1ν for Zν . Indeed,
from (87) and (121), we obtain a logarithmic divergence

G
(1)
1 (m̂) = −D(µ)g log

(µ
κ

)
(123)

while the ZD counterterm, which is shown in figure 2(ii), contributes a term to G1(m̂) given
by

G
(2)
1 (m̂) = ,ZDD (µ) = a1DD (µ) g log

(µ
κ

)
. (124)

But, from the normalization condition (118), we have

G
(1)
1 (m̂) + G(2)

1 (m̂) = 0

and substitution of (123) and (124) leads to

a1D = 1

which equals the value (93) obtained for a1ν .
We demonstrate next that the same results are obtained at 2-loop order. Here we find

that there are five possible topologies for the Feynman diagrams. Four of these contribute
divergences after integration over the solid angles, the fifth giving zero. They are shown in
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(i)

(iii) (iv)

(ii)

Figure 4. The 1PI Feynman diagrams evaluated in section 4 for G2.

figure 4. Their symmetry factors are 2, 1/2, 2 and 1, respectively. In diagram(ii) there is a
doubling of the strength of the singularity at p, q ∼ κ associated with the insertion of the
G
(1)
1 loop discussed above, which offsets its symmetry factor of 1/2. The diagrams generated

by rotating diagrams (i) and (iii) about a vertical axis have been allowed for by doubling the
symmetry factors, as indicated. Each diagram contributes a term of the form

G
(s)
2 (m̂) = − 9

4D(µ)g
2Js(ε) with s = 1, . . . , 4 (125)

in which the final factor is found using the procedure employed for the earlier cases.
Specifically, for diagram 4(i), we get

G
(1)
2 (m̂) = −

∫
A(m,p, q)D(p)D(q)D(|m − p|)I (m,p, q)Dp Dq

where

I (m,p, q) = 1

(2π)2

∫ ∣∣G(p̂)G(q̂)G(m̂− p̂)
∣∣2 G(m̂− p̂)G(m̂− p̂ − q̂) dDp dDq

and

A(m,p, q) = Pαγ δ(m)Pακσ (m)Pτγµ(m − p − q)Pρτλ(m − p)Pκγ (m − p)Pδσ (p)Pλµ(q)

which leads to

J1 (ε) =
∫ ∞

ε

∫ ∞

ε

x(x + 1) + (2 + x)(2 + y)

x2y2 (1 + x)2 (1 + x + y) (2 + y)
dx dy.

Similarly, for diagram 4(ii), we get

G
(2)
2 (m̂) = − 1

4

∫
A(m,p, q)D(p)D(q)D(|m − p − q|)I (m,p, q)Dp Dq

where

I (m,p, q) = 1

(2π)2

∫ ∣∣G(p̂)G(q̂)G(m̂− p̂)G(m̂− p̂ − q̂)
∣∣2 dDp dDq

and

A(m,p, q) = Pαβγ (m)Pαδλ(m)Pβµν(m − p)Pδσρ(m − p)Pγλ(p)Pνρ(q)Pµσ (m − p − q)
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which leads to

J2 (ε) =
∫ ∞

ε

∫ ∞

ε

2 + x + y

x2y2 (1 + x) (1 + x + y) (2 + y)
dx dy.

Again, for diagram 4(iii), we get

G
(3)
2 (m̂) = −

∫
A(m,p, q)D(p)D(q)D(|m − p|)I (m,p, q)Dp Dq

where

I (m,p, q) = 1

(2π)2

∫ ∣∣G(p̂)G(q̂)G(m̂− p̂)
∣∣2 G(−m̂ + q̂)G(−m̂ + p̂ + q̂) dDp dDq

and

A(m,p, q) = Pαβγ (m)Pαδλ(m)Pτνρ(m − p − q)Pδστ (m − q)Pνγ (m − p)Pβσ (p)Pλρ(q)

which leads to

J3 (ε) = 2
∫ ∞

ε

∫ ∞

ε

x(x + 1) + (2 + x)(2 + y)

x2y2 (1 + x) (1 + x + y) (1 + y)(2 + y)
dx dy. (126)

Finally, for diagram 4(iv), we get

G
(4)
2 (m̂) = 1

2

∫
A(m,p, q)D(p)D(q)D(|m − p − q|)I (m,p, q)Dp Dq

where

I (m,p, q) = 1

(2π)2

∫ ∣∣G(p̂)G(q̂)G(m̂− p̂ − q̂)
∣∣2 G(m̂− p̂)G(−m̂ + q̂) dDp dDq

and

A(m,p, q) = Pαβγ (m)Pαδλ(m)Pδστ (m − q)Pγρν(m − p)Pτν(m − p − q)Pβσ (p)Pλρ(q)

which leads to

J4(ε) =
∫ ∞

ε

∫ ∞

ε

y(1 + x)(2 + y)(3 + x + y)− (2 + x)(2 + x + y)(1 + 3y + y2)

x2y2(1 + x)(2 + x)(1 + y)2(2 + y)(1 + x + y)
dx dy. (127)

Evaluation of the four integrals yields the divergent terms

J1(ε) =
(

47

6
− 1

4
log 2

)
log ε +

25

4
log2 ε +

3

ε
+

2

ε2
+

13

2

log ε

ε
(128)

J2(ε) = −
(

5

2
− 1

4
log 2

)
log ε − 9

4
log2 ε − 1

2

1

ε
− 1

ε2
− 5

2

log ε

ε

J3(ε) =
(

9 +
1

2
log 2

)
log ε +

15

2
log2 ε +

3

ε
+

2

ε2
+ 8

log ε

ε

(129)

and

J4(ε) = −
(

2 +
1

2
log 2

)
log ε − 5

2
log2 ε − 1

ε
− 1

ε2
− 4

log ε

ε
. (130)

The sum of the divergences is thus

4∑
s=1

Js(ε) = 37

3
log ε + 9 log2 ε +

9

2

1

ε
+

2

ε2
+ 8

log ε

ε
(131)

which is identical to the sum of the divergences obtained in (115) for >2(m̂).
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It now follows from (75), (103), (108), (115), (117), (125) and (131) that the ratios of the
divergences of the 2-loop terms to the tree level terms for the two 1PI functions, from which
ZD and Zν are calculated, are equal, as we found at 1-loop order, specifically

2∑
s=1

>
(s)
2 (m̂)

>0(m̂)
=

4∑
s=1

G
(s)
2 (m̂)

G0(m̂)
.

Thus, like the 1-loop terms (122), the 2-loop terms also have identical divergences. So the
coefficient a2D in (116) must equal the corresponding coefficient a2ν in (69). In fact, using the
2-loop counterterm

a2Dg
2D(µ) log

(µ
κ

)
to eliminate the logarithmic divergences of G2(m̂) as given by (125) and (131) yields

a2D = − 37
2

as in the case of a2ν .
The fact that the renormalization constants ZD and Zν are equal is a dynamical condition

which indicates that the Kolmogorov scaling of the equal time correlators is preserved under
this renormalization. This happens because D and ν are intervening nonlinear variables,
representing the basic cascade mechanism and relating to a constant mean dissipation rate,
as already indicated and further elaborated in section 8. It implies that the usual perturbative
mechanisms do not modify the Kolmogorov scaling, so that one is led to look elsewhere
for an explanation of multiscaling. The same conclusion has been reached, albeit from
a somewhat different perspective, in [15] where it has been suggested that corrections to
Kolmogorov scaling should be sought in non-perturbative effects, such as resummation of
ladder diagrams [16]. Our argument is that the breaking of the Kolmogorov scale symmetry
manifests itself through the composite operators which appear in the structure functions, as
described in section 3, and that the anomalies can be found directly from the nonlinear Green
functions to be introduced in the next section. Of course, if our calculation had been based on
the viscous zero-order quadratic form in (21), instead of the modified form in (26), then this
relation would not hold.

4.3. The fixed point

The equality of Zν and ZD allows us to calculate the uv fixed point from the linear response
function alone as follows. We use the standard result [14]

β(g) = −g µ ∂

∂µ
logZg

(
1 + g

∂

∂g
logZg

)−1

(132)

where Zg is the renormalization constant associated with the coupling constant. From the
definition Zg = g0/g and (32), (35), (36) and (43), we get

Zg = Z−2
ν .

Inserting this result in (132), and substituting the expansion (69), leads to

β (g) = 2g2(1 + a2νg). (133)

Thus, (67), (68), (114) and (133) yield an uv fixed point given by

g∗ = − 1

a2ν
= 2

37
. (134)

We see that g∗ is, indeed, small, which verifies that the residual coupling associated with the
fluctuation of the dissipation can be treated as weak.
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5. The nonlinear response

Having established that an uv fixed point exists, we can proceed with the calculation of the
anomalous dimension γs of the general operator Os(x̂), which is required for the evaluation
of the anomaly τn. To do this in the simplest possible way, we must identify a 1PI response
function which can be renormalized by means ofZs. Elimination of the logarithmic divergences
from such a function will then enable us to determine the constants in the expansion

Zs = 1 + g∗a
(s)
1 log

(µ
κ

)
+ g2

∗

{
1

2

(
a
(s)
1

)2
log2

(µ
κ

)
+ a(s)2 log

(µ
κ

)}
+ · · · (135)

so that we can calculate γs using (49).
Consider first the case s = 2. Obviously, the required function must involveO2(x̂), which

is the composite operator (31) associated with the longitudinal turbulence energy. In addition,
it must involve the dynamic response operator (11) in order to relate the anomaly τ2 to the
dynamics of the turbulence. This suggests that we should consider how the turbulence energy
responds on average to a change in the forcing. Clearly, we can characterize the response of
the turbulence energy at a point x̂ to a change in the forcing at two points x̂ ′ and x̂ ′′ by means
of the nonlinear Green function

G
(2)
αβ (x̂

′, x̂ ′′, x̂) =
〈

δ2

δfα(x̂ ′)δfβ(x̂ ′′)

(
v1(x̂)

2

2

)〉
. (136)

But the complexity of this object is such that its logarithmic divergences cannot be summed
using the renormalization group in terms of the Z2 and Zν counterterms alone. On the other

hand, its averageG
(2)
αβ (x̂) taken over the forcing separation x̂ ′−x̂ ′′, which gives a mean response

to forcing at the centroid of the excitation points, can be, as we shall show shortly. Hence, its
corresponding 1PI function provides a direct means of obtaining the expansion (135) and so it
provides an adequate basis for the calculation of γ2.

This 1PI function is obtained as follows. We start with the Fourier transform of (136), the
reduced form of which is given by

G
(2)
αβ (k̂, l̂, p̂) = (2π)4δ(k̂ + l̂ + p̂)G(2)

αβ (k̂, l̂) (137)

where

G
(2)
αβ (k̂, l̂) = Pα1 (k) Pβ1 (l)G2(k̂, l̂). (138)

Its corresponding 1PI response function follows from

K
(2)
αβ (k̂, l̂, p̂) = (2π)12 δ3K

δuα(k̂)δuβ(l̂)δt2(−p̂)
(139)

with a reduced form given by

K
(2)
αβ (k̂, l̂, p̂) = (2π)4δ(k̂ + l̂ + p̂)K(2)

αβ (k̂, l̂) (140)

where

K
(2)
αβ (k̂, l̂) = Pα1(k)Pβ1(l)K

(2)(k̂, l̂). (141)

A standard calculation [7] shows that it is related to G(2)
αβ by

K
(2)
αβ (k̂, l̂, p̂) = −

∫
>λα(q̂, k̂) >µβ(q̂

′, l̂) G(2)
λµ(q̂, q̂

′, p̂) dq̂ dq̂ ′ (142)

from which, on making use of (137)–(141), we obtain

K(2)(k̂, l̂) = −>(k̂)>(l̂)G2(k̂, l̂). (143)



Anomalous scaling in homogeneous isotropic turbulence 4415

Next, we average G(2)
αβ over the forcing separation to get

Gαβ(x̂) = 2
∫
G
(2)
αβ (k̂, k̂) exp(2ik̂ · x̂)Dk̂. (144)

This integral shows that the Fourier transform of G
(2)
αβ (x̂) depends only on the diagonal

components of the reduced function (138). It follows, therefore, from (143) and (144), that
the 1PI object which we need to consider, in order to determine Z2, is

K(2)(k̂, k̂) = −>(k̂)2G2(k̂, k̂).

Indeed, an application of (37), together with (73), shows that its bare and renormalized forms
are connected by

K
(2)
R (k̂, k̂) = Z2K

(2)
B (k̂, k̂).

In this way, as we have indicated, we arrive at a function which can be renormalized using the
Z2 counterterm alone.

The normalization condition forK(2)(k̂, k̂) is again applied at the point k̂ = m̂, and chosen
to be consistent with the tree level approximation in conformity with (135), which gives

K(2)(m̂, m̂) = K
(2)
0 (m̂, m̂) = −1 (145)

so that the 1- and 2-loop terms satisfy the normalization conditions

K
(2)
1 (m̂, m̂) = K

(2)
2 (m̂, m̂) = 0. (146)

The diagrams which yield the new logarithmic divergences to 2-loop order, which are
associated with the composite operator, are shown in figure 5 for the case of K(2)

αβ (m̂, m̂),
which is related to K(2)(m̂, m̂) by (141). An important new feature of these diagrams is the
appearance of the heavy dot vertex. This represents the O2 composite operator vertex, which
is shown in figure 1(iv) for the general case of Os. A second difference from earlier diagrams
is that each external leg carrying one of the vector indices (α, say) has a projector Pαλ(m)

associated with it, which is contracted with the vector index λ of the leg of the NS vertex to
which it is attached, in accordance with (142).

We can understand how the diagrams shown in figure 5 arise from the loop expansion
of K by using the general procedure described in [17]. This depends on the fact that (136) is
a special case of the fourth-order correlation function of elementary fields defined by

B
(4)
αβγ δ(x̂

′, x̂ ′′, x̂, ẑ) = i2

2

〈
ṽα(x̂

′)ṽβ(x̂ ′′)vγ (x̂)vδ(ẑ)
〉

in which the arguments x̂ and ẑ coalesce. Hence, their Fourier transforms are related. In
particular, the connection between their respective 1PI functions is

K
(2)
αβ (k̂, l̂, m̂) = 1

2

∫
Mαβλµ(k̂, l̂, m̂− q̂, q̂)Gλ1(m̂− q̂)Gµ1(q̂)Dq̂

where M is the 1PI form corresponding to B(4), which is generated by

Mαβγ δ(k̂, l̂, p̂, q̂) = (2π)16 δ4K

δuα(k̂)δuβ(l̂)iδũγ (p̂)iδũδ(q̂)
.

This implies that the diagrams for K(2)
αβ (m̂, m̂) are constructed from the diagrams for M by

tying the two dotted external legs of the latter to form the O2 vertex.
The 1-loop diagram forK(2)

αβ (m̂, m̂) shown in figure 5(iv) is constructed from the tree level
diagram forM, which is shown opposite to it in figure 5(i). Similarly, the two 2-loop diagrams
forK(2)

αβ (m̂, m̂), shown in figures 5(v) and (vi), are constructed from the 1-loop diagrams forM,
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(i) (iv)

(ii) (v)

(iii) (vi)

m − pˆ ˆ m + pˆ ˆ

m̂ m̂

p̂

Figure 5. The 1PI Feynman diagrams evaluated in section 5 for the nonlinear response functions.

again shown opposite to them in figures 5(ii) and (iii). The other possible 2-loop diagrams for
K
(2)
αβ (m̂, m̂), which arise from the two remaining 1-loop diagrams forM, are discarded because

the logarithmic divergences disappear, after integration over the solid angles. In addition,
vertex and propagator corrections to the tree level diagram 5(i) make no contribution to the
new divergences associated with the composite operator, as discussed further below.

Thus, the 1-loop diagram of figure 5(iv) contributes to K(2)
1 the term

Pα1(m)Pβ1(m)K
(2)′
1 (m̂, m̂) =

∫
Dp DDGλ1(−m̂ + p̂)Gν1(−m̂− p̂)Qγδ(p̂)

×Pλγα(m − p)Pνδβ(m + p)Pαλ(m)Pβµ(m) (147)

yielding

K
(2)′
1 (m̂, m̂) = 3

2gI0(ε)

where I0 is the integral (89). Using (79) and (88) we get a logarithmic divergence

K
(2)′
1 (m̂, m̂) = −g log

(µ
κ

)
. (148)

The counterterm vertex shown in figure 2(iii) adds a term

−Pα1(m)Pβ1(m)K
(2)′′
1 (m̂, m̂) = −Pα1 (m) Pβ1 (m),Z2

so that by (135) its contribution to K(2)
1 is

K
(2)′′
1 (m̂, m̂) = −a(2)1 g log

(µ
κ

)
. (149)

But, from the normalization condition (146), we have

K
(2)
1 (m̂, m̂) = K

(2)′
1 (m̂, m̂) + K(2)′′

1 (m̂, m̂) = 0
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which, upon substituting (148) and (149), gives

a
(2)
1 = −1. (150)

At 2-loop order the diagrams in figures 5(v) and (vi) contribute the terms

Pα1(m)Pβ1(m)K
(2)′
2 (m̂, m̂) = −

∫
Dp̂Dq̂ Qγδ(p̂)Qρτ (q̂)Gθν(−m̂ + p̂)Gσφ(−m̂− p̂)

×Gε1(−m̂ + p̂ + q̂)Gκ1(−m̂− p̂ − q̂)Pαλ(m)Pβµ(m)

×Pθλγ (m − p)Pφµδ(m + p)Pενρ(m − p − q)Pκτσ (m + p + q)

and

Pα1(m)Pβ1(m)K
(2)′′
2 (m̂, m̂) = −

∫
Dp̂Dq̂ Qγν(p̂)Qδτ (q̂)Gθρ(−m̂ + p̂)Gσφ(−m̂ + q̂)

×Gε1(−m̂ + p̂ − q̂)Gκ1(−m̂− p̂ + q̂)Pαλ(m)Pβµ(m)

×Pθλγ (m − p)Pφµδ(m + p)Pερτ (m − p + q)Pκνσ (m + p − q).

Evaluating these integrals following the procedure described in section 4, we get

K
(2)′
2 (m̂, m̂) = − 9

4g
2J3(ε)

and

K
(2)′′
2 (m̂, m̂) = 9

4g
2J4(ε)

where J3 and J4 are the integrals (126) and (127). Using (129) and (130), we obtain the
logarithmic divergences

K
(2)′
2 (m̂, m̂) = 9

4
g2

(
5

3
− 1

6
log 2

)
log

(µ
κ

)
(151)

and

K
(2)′′
2 (m̂, m̂) = 9

4
g2

(
4

3
+

1

3
log 2

)
log

(µ
κ

)
. (152)

To these we must add the 2-loop counterterm corresponding to (149), namely

K
(2)′′′
2 (m̂, m̂) = −a(2)2 g2 log

(µ
κ

)
. (153)

But the normalization condition (146) gives

K
(2)′
1 (m̂, m̂) + K(2)′′

1 (m̂, m̂) + K(2)′′′
1 (m̂, m̂) = 0

which, after substituting (151)–(153), yields

a
(2)
2 = 7.0. (154)

If vertex and propagator corrections are allowed for (which only affects diagram 5(iv) to
order g2), it is found that the pole at D = iσ(µ) in the integral (147), which generates its
logarithmic divergence, is shifted by an amount

,D = −σ(µ)>′
1(m̂)

where

>′
1(m̂) =

(
∂>1(p̂)

∂D

)
p̂=m̂

thereby introducing into the integrand an additional factor

1 − >′
1(m̂). (155)
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However, this is exactly cancelled by the NS vertex correction. For, from the Ward identity
associated with the Galilean invariance [18], it follows that the change in the NS vertex at the
normalization point is given by

,Pαβγ (m) = imγPαβ(m)>′
1(m̂) (156)

so that the angular factor in (147) becomes

Pα1(m)Pβ1(m){1 + >′
1(m̂)}. (157)

Thus, no overall term of order g2 is produced by the two corrections (155) and (157). It may be
noted, in passing, that the Ward identity (156) can be derived by functional differentiation of the
condition (165) for the invariance ofW with respect to an infinitesimal Galilean transformation
given later in section 7.

The foregoing can be generalised to arbitrary s. In place of (139), we now consider the
general 1PI response function

K(s)
α1...αs

(k̂1, . . . , k̂s, p̂) = (2π)4(s+1) δs+1K

δuα1(k̂1) . . . δuαs(k̂s)δts(−p̂)
with a reduced form defined by

K(s)
α1...αs

(k̂1, . . . , k̂s, p̂) = (2π)4δ(k̂1 + · · · + k̂s + p̂)Pα11(k1) . . . Pαs1(ks)K
(s)(k̂1, . . . , k̂s).

ThenZs can be found by eliminating the logarithmic divergences from the diagonal component
K(s)(m̂, . . . , m̂) as above. The relevant diagrams are again those shown in figures 5(iv)–(vi),
except that the heavy dot now symbolises the Os vertex of figure 1(iv), so the s − 2 external
legs ofOs are not shown explicitly. Each diagram has a symmetry factor s(s−1)/2. As this is
the only respect in which these diagrams differ from those just considered, we have the relation

a
(s)
1,2 = s(s − 1)

2
a
(2)
1,2. (158)

However, this is an approximate result, because it is not valid for diagrams containing more
than 2-loops. But, as we discuss further below, it suffices for the calculation of low-order
exponents. Thus, we have now calculated all the numerical constants that we require for the
evaluation of ζn.

6. The scaling exponents

For n = 2, we have, from (53),

ζ2 = 2
3 + ,2

where, from (49), (54) and (135).

,2 = −g∗(a
(2)
1 + a(2)2 g∗). (159)

Substituting the numerical values calculated above, as given in (134), (150) and (154), we get

,2 = 46
372 = 0.0336

which yields

ζ2 = 0.70.

For n = 3, we shall verify in section 8 that the known exact result

ζ3 = 1

holds.
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Figure 6. Comparison of the theoretical expression for ζn (full line) with experimental data.

In the general case, for n > 3, we have from (64)

ζn = n

3
− τn.

For even orders n = 2m, the anomaly is given by (65),

τn = max
p
τnp. (160)

But, from (49), (63), (135), (158) and (159), we have

τnp = {p(p − 1) + (n− p)(n− p − 1)− 2(m− p)[2(m− p)− 1]} ,2

2
.

A simple calculation shows that the maximum value of this expression is attained by the two
terms in the series (58) with (a) p = m and (b) p = m− 1; which gives for (160)

τn = m(m− 1),2. (161)

For odd orders, n = 2m + 1, the anomaly is given directly by (66), which yields

τn = m2,2

where we have again used (49), (135), (158) and (159).
The above results have been used to calculate ζn up to n = 10. The results are shown

in figure 6, together with the experimental data taken from [19–23]. It can be seen that the
agreement is good up to about n = 7 and fair beyond, if we allow for the uncertainties in
the experimental data which begin to arise. In particular, it may be noted that the key values
ζ2 = 0.70 and ζ6 = 1.8 are in good agreement with experimental data, the respective data
sets from [19–23] giving for ζ2 the values (0.71, 0.70, 0.71, 0.70, 0.71) and for ζ6 the values
(1.78, 1.8, 1.8, 1.71, 1.71). The divergence of the experimental data at higher orders reflects
the fact that the experimental determination of ζn is not yet fully satisfactory for the reasons
given in [23]. Hence, the good agreement between our calculations at higher values of n with
the particular data sets from [19–21] must be treated with caution, particularly as the expression
we have derived above is not applicable at large orders. This limitation stems from the fact
that the mean nonlinear response function, being an average over the forcing configuration,
does not represent the effect of multiple correlations with sufficient accuracy at large n. In
addition, the approximation (158), as we have noted, only holds up to 2-loop order. Indeed, it
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is evident from the foregoing that the overall approximation must fail when ng∗ ∼ 1. However,
this occurs at roughly n = 20, which is well above the current limit of reliable experimental
data. Equally, the divergence of our theoretical values at higher values of n from the other two
data sets [22, 23] could indicate that the accuracy of our low order approximation is already
beginning to deteriorate at around n ∼ 10.

7. Elimination of sweeping

We now return to the question of the power and power × logarithmic divergences which,
up to this point, we have simply discarded on the grounds that they cancel when sweeping
convection is taken into account. The fact that power divergences arise when field-theoretic
methods are applied to turbulence, using an Eulerian approach, was noticed originally in [24].
Their origin was subsequently identified as being due to the kinematic effect of the sweeping
of small eddies by large eddies, having an almost uniform velocity [25, 26]. The remedy
was to change from an Eulerian to a Lagrangian description, but this greatly complicates the
subsequent analysis [27]. However, it has been shown that the elimination of sweeping can
be accomplished more simply by transforming to a frame moving with the local velocity of
the large-scale eddies at some chosen reference point, [28, 29]. We shall show that a similar
approach can be used to eliminate the power and power × logarithmic divergences within
the present framework. In this way, we shall demonstrate that, although we have started out
from an Eulerian formulation, we ultimately obtain quasi-Lagrangian approximations for the
renormalized functions.

The problem, therefore, is to find a sweeping interaction term, ,Ls, which cancels
the effect of sweeping convection. To this end, let us begin by including in the NS
equations (4) a uniform convection U . Then, in the second term of (26), F (k̂, v) is replaced
by F (k̂, v)− ik · Uv(k̂), so that W contains the additional term

exp

{∫
k · U ṽ(−k̂) · v(k̂)Dk̂

}
.

Let us assume further that U is a random variable having a Gaussian distribution
∝ exp(−U 2/2U 2

0 ). This permits us to average W over U , the result being the addition to
L of an interaction term given by

,LU = −U 2
0

2

∫
l · m ṽ(m̂) · v(−m̂) ṽ(l̂) · v(−l̂)Dl̂ Dm̂ (162)

where, as above, the variables v and ṽ refer to the moving frame. Note that ,LU , like L, is
Galilean invariant because it entails only gradients of the velocity field.

We show next that a term of this form, with the appropriate value of U 2
0 , generates all

power divergences arising from the sweeping convection associated with L(v, ṽ). Thus, a
term of the form (162), with this specific value ofU 2

0 , but of opposite sign, provides the means
to satisfy the condition that convection makes no contribution to the underlying probability
distribution in the moving frame, leading, at the fixed point, to a precise form for,Ls, as given
below in (164). The result is a generating functional which isolates the straining interactions
that determine the scaling exponents from the background of sweeping convection.

To represent diagrammatically the additional terms which arise in the loop expansion
of W , after the inclusion of the sweeping interaction term, we need to introduce a new 4-leg
‘sweeping’ vertex of the type shown in figure 7(i). The two wavevectors l̂ and m̂ in (162)
enter this vertex along its continuous legs and leave along the dotted legs. A pair of legs
carrying a particular wavevector must also carry the same vector index to represent the scalar
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(i) (ii)

k, aˆ l, bˆ

l, bˆk, aˆ

Figure 7. (i) The ‘sweeping’ vertex; (ii) the 1-loop ‘sweeping’ Feynman diagram for the linear
response function evaluated in section 7.

product. Free wavevectors in a diagram containing one or more of these sweeping vertices are
identified, as previously, by overall wavenumber conservation, together with conservation at
any NS vertex. Each sweeping vertex then contributes a factor U 2

0 l · m, where l and m are
the two wavevectors which enter the vertex along its two continuous legs. In all other respects
the diagrams are to be interpreted in accordance with the rules given in section 4.

Consider now the set of diagrams, containing only NS vertices, which are associated
with a particular Green function or velocity correlator, G, say. Let CNS denote any such
diagram contributing to G. We shall show that it is possible to generate all power and power ×
logarithmic divergences of any CNS from a single sweeping interaction of the form (162). Let
CU denote any diagram containing at least one sweeping vertex. IfCU contains no NS vertices
at all, then it will only generate power divergences. But if it contains at least one NS vertex,
it will also generate power × logarithmic divergences. The following topological argument
demonstrates that the power divergences of CNS can be put into 1–1 correspondence with the
CU diagrams relating to G.

Each factor τ(κ) (or, equivalently, ε−1) in a power divergence of CNS arises because it
is possible for a soft wavevector q to flow through a particular velocity correlator without
flowing through the active legs of the two NS vertices which it connects, as already discussed
in section 4. This situation can be represented diagrammatically by contracting the correlator
into a 4-leg vertex formed by merging the two NS vertices which it links, whilst leaving the hard
lines in tact. This can be demonstrated as follows. First, the new vertex must consist of two
in-coming full lines which carry hard wavevectors, l and m (say), and two outgoing dotted
lines along which they leave. This is because two full legs disappear from the merged NS
vertices and wavevectors leave NS vertices along the dotted leg. Furthermore, after integrating
over the directions of the soft wavevector q, the two merged NS vertices generate, through
contraction of the projectors, a factor proportional to the scalar product of the in-coming hard
lines, l · m, while the two legs of a pair carrying the same wavevector acquire the same vector
index. The final integration over the wavenumbers then produces the constant

1

6π2

∫ ∞

κ

q2D(q)τ(q) dq = 3

2
gτ(κ)ν3.

So, such a vertex must, in fact, be of the sweeping convection type (162), with a coefficient
given by

U 2
0 = 3

2gτ(κ)ν
3 (163)
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which relates the rms value of the convection velocity to the strength of the nonlinear interaction.
Note that U0 is scale dependent, as it depends on the renormalization scale µ through g and ν,
and, hence, it differs according to the fluctuation scale on which the RG focuses. In physical
terms, this reflects the fact that the rms convection velocity depends on the scale selected.
Changing the renormalization scale does not, of course, affect the Galilean invariance. When
the fixed point is reached, in the limit µ → ∞, corresponding to scale invariance, U0 has the
specific value which is obtained by substituting the fixed point values in (163). In general, as
discussed below, the application of an arbitrary infinitesimal Galilean transformation leads to
the turbulence Ward identities.

Clearly, if a subset of correlators of CNS, each of which carries a soft wavenumber,
is contracted into such 4-leg vertices, in a manner which allows hard wavevectors to flow
through CNS, then the result is a diagram which is identical to one of the CU diagrams.
Moreover, it is clear that there are always exactly as many ways to contract the correlators
in CNS as there are different CU diagrams and that their symmetry factors must match. This
argument demonstrates, therefore, the important point that the power and power × logarithmic
divergences generated by the NS vertex must arise on account of the background of kinematic
sweeping effects. Moreover, we also see that, in order to cancel them, it is only necessary to
introduce a sweeping interaction term into W of opposite sign to the one from which they can
be generated, which, according to (162) and (163) yields the sweeping interaction term

,Ls = 3

4

gν3

τ(κ)

∫
l · m ṽ(m̂) · v(−m̂) ṽ(l̂) · v(−l̂)Dl̂ Dm̂. (164)

The insertion of ,Ls into W corresponds, then, to working in a frame moving with the local
velocity of the large scale eddies, as given by (163), with ,Ls cancelling all the contributions
ofL to the probability that are associated with sweeping convection. Thus, the sweeping vertex
shown in figure 7(i) is taken to represent the algebraic factor

Vertex 7(i) = − 3
2gτ(k)ν

3 l · m.

Having inserted (164) into W one is then left with only the pure logarithmic divergences
generated by the NS vertex, which, as we have shown, can be summed using the RG.

Given that L,,Ls and Os, and the measure of integration in W are invariant under a
Galilean transformation, the only variation to W under the transformation comes from the
source term. In particular, following standard symmetry arguments [7], the requirement for
invariance under an infinitesimal transformation v → v + δV and x → x − δV t provides the
generating equation for the turbulence Ward identities, as derived in [18], namely

δW

δVα
=
∫

dx̂

{
−t J̃β(x̂) ∂

∂xα

δ

δJ̃β(x̂)
+ Jα(x̂)

}
W = 0 (165)

from which relations such as (156) can be derived by functional differentiation with respect to
the source fields J and J̃ .

We now illustrate the foregoing by verifying to 2-loop order that >(k̂) contains no power
divergences when the contributions from both the NS and the sweeping vertices are included.
In section 4, we derived the power divergences that are generated by the NS vertex in the case
of >(k̂). At 1-loop order they arise from diagram 3(i), for which (88) and (90) yield, at the
normalization point,

>1 (diagram 3(i)) = 3

2
g
τ(κ)

τ (µ)2
. (166)
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(i)

(iii)

(v)

(ii)

(iv)

(vi)

Figure 8. The 2-loop ‘sweeping’ Feynman diagrams for the linear response function evaluated in
section 7.

At 2-loop order they arise from diagrams 3(iii) and (iv). In the first case, (103), (105) and (106)
yield

>2 (diagram 3(iii)) = −9

4

g2

τ(µ)

{
1

ε2
+

5

2

1

ε
+

4

ε
log ε

}
(167)

while, in the second case, (108), (110) and (111) give

>2 (diagram 3(iv)) = −9

4

g2

τ(µ)

{
1

ε2
+

2

ε
+

4

ε
log ε

}
. (168)

On the other hand, the sweeping vertex makes the following contributions to >(k̂). At
1-loop order, the Feynman rules applied to the sweeping vertex yield the single diagram of
figure 7(ii), as we anticipate from the fact that the NS vertices in figure 3(i) can be merged in
only one way. In this case, a trivial calculation yields

>1 (diagram 7(ii)) = −3

2
g
τ(κ)

τ (µ)2

which cancels (166), as required.
At 2-loop order, the sweeping diagrams corresponding to diagrams 3(iii) and (iv) are shown

in figure 8. Explicit verification that there are no power or power×logarithmic divergences in
>(k̂) at 2-loop order is less trivial. Consider first diagram (iv) of figure 3. For this diagram
the corresponding sweeping diagrams are diagrams (i)–(iii) of figure 8. This follows from
the Feynman rules and can be checked from diagram (iv) of figure 3. by first contracting its
correlators individually and then together. By applying the Feynman rules to diagram (i) of
figure 8, we obtain, at the normalization point,

Pαβ(m)>2 (diagram 8(i)) = 3
2gτ(κ)ν

3
∫

p · (k − p)Pλσν(m)Pτρβ(m − p)



4424 M J Giles

×Qρν(p̂)Gαλ(m̂)Gσµ(m̂− p̂)Gµτ (m̂− p̂)Dp̂.

We can evaluate this integral using the method described in section 4. This gives

>2 (diagram 8(i)) = 9

4

g2

τ(µ)

1

ε

∫ ∞

ε

dx

x2(x + 1)2

= 9

4

g2

τ(µ)

{
1

ε2
+

2

ε
log ε +

1

ε

}
.

Diagram (ii) of figure 8 yields the same value

>2 (diagram 8(ii)) = >2 (diagram 8(i)).

Finally, evaluation of the diagram(iii) of figure 8 is trivial and yields

>2 (diagram 8(iii)) = −9

4

g2

τ(µ)

1

ε2
.

Evidently, the sum of these three diagrams cancels (168) exactly.
Similarly, we can show that the sweeping vertex eliminates the power divergences arising

from the second 2-loop diagram, shown in figure 3(iii). In this case, the corresponding diagrams
generated by the sweeping vertex are diagrams (iv), (vi) of figure 8 which contribute the terms

>2 (diagram 8(iv)) = 9

4

g2

τ(µ)

{
1

ε2
+

1

ε
log ε

}

>2 (diagram 8(v)) = −9

4

g2

τ(µ)

1

ε2

and

>2 (diagram 8(vi)) = 9

4

g2

τ(µ)

{
1

ε2
+

3

ε
log ε +

5

2

1

ε

}
.

Again, their sum exactly cancels (167). We have thereby verified to 2-loop order that the
sweeping vertex eliminates power divergences generated by the NS vertex from the linear
response function.

8. The Kolmogorov approximation

The fact that it has been possible to calculate the anomalies successfully by means of
perturbation theory stems, in part, from the incorporation of the Kolmogorov theory into
the zero order approximation. As we have seen, this has been done by replacing the actual
viscous quadratic form in W , arising from the NS equations, by a modified quadratic form,
characterised by an effective random stirring force spectrum D(k) and the effective timescale
τ(k). We now demonstrate that these two functions can be deduced self-consistently as part
of the calculation and confirm that that they do have the inertial range forms given in (28)
and (29).

To determine these functions, we need two conditions. As in [10], one condition is
supplied by evaluating the energy equation to 1-loop order, which gives the convergent DIA
form, corresponding to the so-called line renormalization [27]. In the inertial range, it reduces
to the condition that the energy flux across wavenumbers GE(k) is independent of k and equal
to the mean dissipation rate ε:

GE(k) = ε.
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Thus, evaluation of GE(k) to 1-loop order gives the well known result [27]

GE(k) =
∫ ∞

k

T (p) dp

where

T (p) = 8π2
∫ ∫

,

dq dr
p3qr

τ(p)−1 + τ(q)−1 + τ(r)−1

× {b(p, q, r)Q(r)(Q(q)−Q(p)) + b(p, r, q)Q(q)(Q(r)−Q(p))} . (169)

Here , indicates integration over the region of the p, q plane in which p, q, r can form a
triangle and

b(p, q, r) =
(
p2 + q2 − r2

)3

8p4q2
+
r4 − (

p2 − q2
)2

4p2r2
.

The second condition must be deduced from the linear response function. This is where
difficulties have arisen with this approach in the past, when using an Eulerian framework,
because of the ir divergences arising from sweeping. On the other hand, it is known that no
divergence problems arise from sweeping convection in the case of the energy equation [27].
However, we have just shown how these power divergences can be systematically removed
from the response function (and, indeed, all such functions) by means of a random Galilean
transformation of the velocity field. This leaves the logarithmic divergences which, as we
have seen, are to be eliminated from >(k̂) using the Zν counterterm. Recall that to fix the
finite part of >(k̂), after this renormalization, we imposed the normalization condition (75)
which specifies that its tree level term should be exact at the normalization scaleµ. Thus, after
eliminating sweeping convection, as described in section 7, and using the 1-loop normalization
condition (75) to eliminate the logarithmic divergences, we obtain, at an arbitrary wavevector
k (with ω = 0), the renormalized linear response function

>(k, 0) = τ(k)−1 +
µ2τ(µ)3 − k2τ(k)3

6π2τ(k)τ (µ)

∫ ∞

0

p2τ(p)2D(p) dp

(τ(k) + τ(p)) (τ (µ) + τ(p))

+
µ2τ(µ)2 − k2τ(k)2

6π2

∫ ∞

0

p2τ(p)D(p) dp

(τ(k) + τ(p)) (τ (µ) + τ(p))
. (170)

It is precisely the condition that this expression should, indeed, yield a finite renormalized
value which provides the required second relation, as we now explain.

In the inertial range limit, we seek scaling solutions with τ(k) ∝ k−a and Q(k) ∝ kb,
in which case D(k) = 2τ(k)−1Q(k) ∝ ka+b. Now standard dimensional analysis shows that
for (169) to hold in these circumstances, we must have a + 2b = −8, [27]. Furthermore, if this
scaling solution were to produce a non-renormalizable divergence in the response function, it
would arise in the second term of (170), since we can assume that a > 0. To prevent this from
occurring, the coefficient of the integral must be zero, which requires

τ(k)

τ (µ)
=
(µ
k

)2/3

giving a = 2/3, and, hence, b = −11/3, so that a + b = −3. Thus, these relations do, in fact,
yield the solution (28) and (29), which we may conveniently re-write as

τ(k)−1 = βε1/3k2/3 (171)

and

D(k) = α

2π
ε2/3k−3. (172)
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Therefore, the energy spectrum function

E(k) = 4πk2Q(k) = 2πk2D(k)τ(k)

takes the Kolmogorov inertial range form

E(k) = αε2/3k−5/3

and the integral in the third term of (170) is, indeed, finite and yields

>(k, 0) = τ(k)−1

{
1 − g log

(
k

µ

)}
.

For present purposes, explicit evaluation of the two constants is unnecessary, since they
ultimately disappear from the calculation of the exponents, because they only occur through
the coupling constant which, as we have seen, is eventually evaluated in terms of its fixed point
value.

Next, we comment briefly on the effect of allowing for the perturbation terms (27) which
give the difference between the modified quadratic form and the original viscous form. As
in [10], we can treat these terms as being of nominal order g. Their effect is, firstly, to
re-introduce into >(k̂) the viscous timescale τν (k) which was replaced by τ0(k). Secondly,
and more significantly, new divergences appear. However, it is not difficult to show that the
divergent terms which are independent of h(k) and ν sum exactly to the amount cancelled by
the counterterms, as would be expected. In the inertial range limit ν → 0, this leaves the term
arising from h(k), which is given by

,> = − k2

τ(k)

∫ ∞

0

p2h(p) dp

τ(k)−1 + τ(p)−1
.

Given that the actual stirring force spectrum function h(k) has remained arbitrary, subject only
to the condition that it yields a finite input power given by

4π
∫ ∞

0
p2h(p) dp = ε

it is clear that the above integral for ,> must be finite.
Thus, the role of these perturbation terms is not critical as regards calculating the

anomalous exponents, provided that the the spectrum of the stirring forces is non-zero only at
small k, as it should be. However, what we find is that, although forced at large scales, the
above solution behaves in the inertial range as if the fluid were stirred with a force spectral
function ∝k−3. In this context, it is interesting to note that, in a study of the randomly
forced NS equations by a stochastic force with zero mean and variance ∝k−3 [30], evidence of
multiscaling of the structure functions has been found. In particular, the results obtained for the
ratios ζn/ζ2 with the k−3 spectrum have been shown to agree with the values computed from the
NS equations forced at large scales. This, of course, is exactly what one might expect from the
above approximation. The present results are also consistent with the numerical calculations
in [31], which suggest the scaling τL(k) ∝ k−2/3, as in (171), for the Lagrangian micro-
timescale, as opposed to the scaling τE(k) ∝ k−1 for the Eulerian micro-timescale, evidence
for which has also been presented in [32]. As we have seen, the reason why the Lagrangian
timescale applies in the present calculation is because we have eliminated sweeping by referring
the velocity field to a frame moving with the local velocity of the large scale eddies which
prevail at any chosen scale. This extracts the straining interactions, which shape the spectrum,
from the background of convection, to yield quasi-Lagrangian approximations.

In a sense, this derivation of the Kolmogorov quadratic form is analogous to a multiple
timescale expansion in nonlinear wave theory, where part of the nonlinear behaviour is
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incorporated into the linear approximation, e.g. via a slowly changing wave amplitude, the
variation of which is then determined from the nonlinear interaction by requiring the absence of
secular terms in the higher order approximation. Here there is a similar solvability requirement
which demands the absence of non-renormalizable terms, thereby determining the nonlinear
behaviour of the modified quadratic form.

An integral part of the Kolmogorov theory is the exact result that in the inertial range limit

S3(r) = − 4
5εr (173)

[5]. So we conclude this section by verifying that this result follows from the present treatment.
Using standard symmetry relations, we can express S3(r) in terms of the longitudinal

component of the equal time triple velocity correlator

Bαβγ (x) = 〈
vα(0)vβ(0)vγ (x)

〉
giving

S3(r) = 6B111(r, 0, 0). (174)

Now the general form of the Fourier transform of Bαβγ must be

Bαβγ (k) = iF(k)Pγαβ(k)

and so F(k) can be expressed in terms of the transfer spectrum T (k) by

F(k) = π2

k4
T (k)

while T (k) is given to 1-loop order by (169). Substituting these results in (174) gives

S3(r) = 12iπ
∫

T (k)

k4
k1

(
1 − k2

1

k2

)
exp(ik1r)Dk.

This integral can be expanded in powers of r the lowest-order term giving

S3(r) = −12π2r

∫
T (k)

k4
k2

1

(
1 − k2

1

k2

)
Dk.

After integrating over the solid angle, we get

S3(r) = −r 4
5

∫ ∞

κ

T (k) dk.

This latter integral is, of course, the transport powerGE(κ), which is a finite quantity at 1-loop
order and equal to the mean dissipation rate, as indicated in above, and, hence, we recover (173).

The correlation function B111(x) also has an important role in the derivation of the OPEs
required for the structure functions with higher odd orders, as we shall see shortly.

9. Derivation of the OPEs

We give finally the derivation of the dominant terms of the OPEs which we have used in
section 3 to obtain the structure function expansions relative to the moving frame. We deal
first with the expansions required for the higher order structure functions with orders n > 3.
These can be obtained using the technique described in [33]. We defer discussion of the
particular case n = 2 until last, because it requires a different approach for the reasons given
in section 3.
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We begin by considering the OPE of the general product, defined in (55), as it appears in
the expansion (56) for Sn(r), taking first the case of even orders n = 2m, withp = 0, 1, . . . , m,
namely

:n−p,p(x̂, r) = v
n−p
+ v

p
−

p!(n− p)!

where, as previously, v± = v1(x ± r/2, y, z, t), and we have used the definition (31), which
applies in the moving frame. Let us consider the effect of inserting :n−p,p into a correlation
function containing an arbitrary set of elementary fields vα1(x̂), . . . , vαl (x̂l), as in (40). Then,
following the approach of [33], we can derive the dominant terms which we have used in
section 3 by considering how many of the v+ fields can be paired with a v− field to form
products of lower-order correlation functions.

Consider the case p = m, i.e.

〈vα1(x̂1) . . . vαl (x̂l):m,m(x̂, r)〉.
Here each v+ can be paired with a v− to yield a product term〈(

v+v−
)m〉 〈

vα1(x̂1) . . . vαl (x̂l)
〉

(175)

which corresponds to the presence of a unit operator term in the OPE, [33]. If, instead, we
only select m− 1 pairs of v+v− products, we obtain a term of the type

2
〈(
v+v−

)m−1〉 〈
vα1(x̂1) . . . vαl (x̂l)

(
v2

+

2

)〉
.

Now, in the limit as r → 0, v2
+/2 behaves like an insertion of O2(x̂) into the correlation

function of elementary fields [33]. Hence, this product tends to

2
〈(
v+v−

)m−1〉 〈
vα1(x̂1) . . . vαl (x̂l)O2(x̂)

〉
. (176)

But the averages of powers of v+v− simply yield non-stochastic functions of r , which we
shall denote generically by C0(r), C2(r), . . . , as appropriate. Thus, from (175) and (176), we
obtain, in the limit as r → 0,〈
vα1(x̂1) . . . vαl (x̂l):m,m(x̂, r)

〉 = 〈
vα1(x̂1) . . . vαl (x̂l)

[
C0(r) + C2(r)O2(x̂) + · · · ]〉.

Since the elementary fields are arbitrary, it follows that we have an OPE of the form

:m,m(x̂, r) = C0(r)I + C2(r)O2(x̂) + · · · .
The point about expansions of this type is that the operators of increasing complexity do,
indeed, produce subdominant terms in the expansion of Sn(r). Here, for example, the unit
operator term, as we have shown, produces the dominant scaling with anomalous exponent
given by (161), whereas the quadratic term can be readily shown to give the smaller exponent
τn = [m(m − 1) − 1],2, and, hence, is subdominant, while further terms in the expansion
would produce even greater reductions.

A similar argument applies when p = m− 1. In this case, however, we cannot pair every
v+ with a v−. Therefore, the unit operator term cannot appear in the OPE for :m+1,m−1. If,
however, we pair every v− with a v+ then the remaining v2

+ pairs with the elementary fields
and, in the limit as r → 0, again appears as an O2(x̂) insertion. In this case, therefore, the
OPE starts with O2(x̂) to give

:m+1,m−1(x̂, r) = C2(r)O2(x̂) + · · · .
By continuing with this argument, we see that the dominant term of the OPE for the general
case of :n−p,p must take the form given in (57).
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Consider next odd orders, n = 2m + 1. When p = m, we have a term of the form〈
v2

+v−
〉 〈(
v+v−

)m〉 〈
vα1(x̂1) . . . vαl

(
x̂l
)〉

which, again, corresponds to the presence of a unit operator term, which is, thus, the dominant
term of the OPE, giving

:m+1,m(x̂, r) = C0(r)I + · · · .
When p = m− 1, by pairing each v− with a v+, we obtain a term of the form〈(

v+v−
)m−1〉 〈

vα1

(
x̂1
)
. . . vαl

(
x̂l
)
v3

+

〉
.

In the limit as r → 0, v3
+ appears as an insertion of the cubic operator O3(x̂), so that here the

OPE takes the form

:m+2,m−1(x̂, r) = C3(r)O3(x̂) + · · · .
Continuing this process, we get for the next OPE

:m+3,m−2(x̂, r) = C5(r)O5(x̂) + · · ·
and so on.

In fact, however, the only term which contributes to Sn(r) for odd n is the unit operator
term of:m+1,m because

〈
O2s+1(x̂)

〉 = 0, for any integer s, in the case of homogeneous isotropic
turbulence. The latter well known result follows from W by virtue of the fact that the relevant
Feynman diagrams contain an odd number of NS vertices, one composite operator vertex and
no external legs, so that any such diagram gives zero on integrating over the solid angles,
because the NS vertex is an odd function of k, whilst other factors are even. For example,
in the case of O3(x̂), its lowest order term is given by the 2-loop diagram shown in figure 9,
which contains one NS vertex and the O3 vertex and has a symmetry factor of 1/2. Hence, it
yields a contribution to

〈
O3(x̂)

〉
given by

〈
O3(x̂)

〉 = i

2

∫
Pαβγ (l + m)P1λ(l)P1µ(m)Gαλ(l̂ + m̂)Qβµ(l̂)Qγν(m̂)Dl̂ Dm̂.

Substituting the zero-order correlator (78) and propagator (81), we get

〈
O3(x̂)

〉 = i

2

∫
P1βγ (l + m)P1β(l)P1γ (m)D(l)D(m)I (l,m)Dl Dm (177)

where

I (l,m) = 1

(2π)2

∫
dD dD′

[D2 + σ(l)2][D′2 + σ(m)2][i(D + D′) + σ(|l + m|)]
= 1

4σ(l)σ (m)[σ(l) + σ(m) + σ(|l + m|)] .

Clearly, the integrand in (177) changes sign under the transformation (l,m) → (−l,−m),
because all factors are even except for P1βγ (l + m), which changes sign. It follows that the
integral is zero.

In the particular case of v+v−, we can establish the form of its OPE by using an expansion
in the Fourier domain, in which the wavenumber q, corresponding to the separation r , tends
to infinity, as described, for instance, in [7,8]. To this end, we start by considering the general
correlation function

Hαβλµ(x̂1, x̂2|x̂ ′, x̂ ′′) = 〈
vα
(
x̂1
)
vβ
(
x̂2
)
vλ
(
x̂ ′)vµ(x̂ ′′)〉
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l̂ m̂l + mˆ ˆ

Figure 9. The 2-loop Feynman diagram for
〈
O3(x̂)

〉
.

(i) (ii)

(iii)

ˆ

ˆ ˆ

k + p  + sˆ ˆ ˆ k + p  + sˆ ˆ ˆ

l, µˆ

l, µˆ

k, λˆk, λˆ

ˆ

p, αˆ

s + p ˆ ˆs + pˆ ˆs – p ˆ ˆs – l

s

ŝ

ŝ

p̂  , β p̂  , β

p̂ , β

p̂, α

p̂ – s

p̂, α

ˆp̂ + sµ λ

Figure 10. The 1-loop Feynman diagrams for the correlation functions evaluated in section 9 in
connection with the OPEs.

for the case in which x̂ ′ and x̂ ′′ tend to a common point x̂, well separated from x̂1 and x̂2. For
simplicity of presentation here, we have included only two arbitrary fields vα(x̂1) and vβ(x̂2).
Denote its Fourier transform by

Hαβλµ(p̂, p̂
′|k̂, k̂′) = 〈

vα
(
p̂
)
vβ
(
p̂′)vλ(k̂)vµ(k̂′)

〉
= (2π)4 δ(p̂ + p̂′ + k̂ + k̂′)H̃αβλµ(p̂, p̂

′|k̂, k̂′). (178)

Then, in terms of the reduced correlation function, we can write

Hαβλµ(x̂1, x̂2|x̂ ′, x̂ ′′) =
∫

Dp̂Dp̂′ Dq̂ H̃αβλµ

(
p̂, p̂′

∣∣∣∣q̂ − p̂ + p̂′

2
,−q̂ − p̂ + p̂′

2

)

× exp

{
ip̂ ·

(
x̂1 − x̂ ′ + x̂ ′′

2

)
+ ip̂′ ·

(
x̂2 − x̂ ′ + x̂ ′′

2

)
+ iq̂ · (x̂ ′ − x̂ ′′)} . (179)
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When the arguments in (178) coalesce to the common point x̂, we obtain the correlation
function

Qαβλµ(x̂1, x̂2|x̂) = 〈
vα
(
x̂1
)
vβ
(
x̂2
)
vλ
(
x̂
)
vµ
(
x̂
)〉

with Fourier transform

Qαβλµ(p̂, p̂
′|q̂) = 〈

vα
(
p̂
)
vβ
(
p̂′) (vλvµ) (q̂)〉

= (2π)4 δ(p̂ + p̂′ + q̂)Q̃αβλµ(p̂, p̂
′|q̂).

Thus, corresponding to (179), we have

Qαβλµ(x̂1, x̂2|x̂) =
∫

Dp̂Dp̂′ Qαβλµ(p̂, p̂
′| − p̂ − p̂′) exp

{
ip̂ · (x̂1 − x̂

)
+ ip̂ · (x̂2 − x̂

)}
.

Let Rαβλµ(p̂, p̂
′|k̂, k̂′) and Sαβλµ(p̂, p̂

′|q̂) be the 1PI functions associated with the
connected parts of H̃αβλµ(p̂, p̂

′|k̂, k̂′) and Q̃(p̂, p̂′|q̂). We consider the specific vertex shown
in figure 10, the treatment of the other three vertex functions associated with (178) being
similar. Denoting the connected part by superscript c, we have, as in section 5,

H̃
(c)
αβλµ(p̂, p̂

′|k̂, k̂′) = −Gαα′
(
p̂
)
Gββ ′

(
p̂′)Gλλ′(k̂)Gµµ′(k̂′)Rα′β ′λ′µ′(p̂, p̂′|k̂, k̂′) (180)

and

Q̃
(c)
αβλµ(p̂, p̂

′|q̂) = −Gαα′(p̂)Gββ ′(p̂′)Sα′β ′λµ(p̂, p̂
′|q̂). (181)

According to the standard procedure [7, 8], the behaviour of the correlation function
Hαβλµ(x̂1, x̂2|x̂ ′, x̂ ′′) as a function of x̂ ′ − x̂ ′′, when x̂ ′ and x̂ ′′ both tend to a common value x̂,
can be deduced from the behaviour of Rαβλµ(p̂, p̂

′|q̂ − (p̂ + p̂′)/2,−q̂ − (p̂ + p̂′)/2), in
the limit as q̂ → ∞, which is, indeed, apparent from (179) and (180). Now, the diagrams
which contribute to this 1PI correlation function are diagram (i) of figure 9, together with its
permutation (p̂, α) ↔ (p̂′, β), and diagram (ii). However, it is easy to see from these diagrams
that, as q̂ → ∞, diagram (ii) yields a contribution which is smaller than that from diagram (i)
by a factorQσν(q̂) ∼ q−11/3. So to derive the dominant term, we need to focus on diagram (i)
and its permutation. The corresponding diagrams forSαβλµ(p̂, p̂

′| − p̂− p̂′) are diagram (iii)
of figure 9 plus its permutation λ ↔ µ.

Evaluation of these diagrams using the Feynman rules is straightforward and yields

Rαβλµ

(
p̂, p̂′

∣∣∣∣q̂ − p̂ + p̂′

2
,−q̂ − p̂ + p̂′

2

)

=
∫
Pλξρ

(
q − p + p′

2

)
Pµτη

(
−q − p + p′

2

)
Pαγσ (p)Pβνδ(p

′)

×Qγδ(ŝ)Qησ (p̂ − ŝ)Qξν(p̂
′ + ŝ)Qρτ

(
q̂ +

p̂′ − p̂

2
+ ŝ

)
Dŝ + (p̂, α) + (p̂′, β)

and

Sαβλµ(p̂, p̂
′| − p̂ − p̂′) = −

∫
Pασγ (p)Pβνδ(p

′)Qγδ(ŝ)Qσµ(p̂ − ŝ)Qλν(p̂
′ + ŝ)Dŝ

+(λ ↔ µ).

Hence, for large q̂, we obtain from the last two equations the relation

Rαβλµ

(
p̂, p̂′

∣∣∣∣q̂ − p̂ + p̂′

2
,−q̂ − p̂ + p̂′

2

)
= Pλξρ(q)Pµτη(q)Qρτ (q̂)Sαβξη(p̂, p̂

′| − p̂ − p̂′).
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Combining this with (180) and (181) yields the approximation

H
(c)
αβλµ

(
p̂, p̂′

∣∣∣∣q̂ − p̂ + p̂′

2
,−q̂ − p̂ + p̂′

2

)
= Cλµξη(q̂)Q

(c)
λµξη(p̂, p̂

′| − p̂ − p̂′) (182)

where, to this order,

Cλµξη(q̂) = Pλξρ(q)Pµτη(q)
∣∣G(q̂)∣∣2 Qρτ (q). (183)

To obtain the required expansion for v+v−, we must take the inverse Fourier transform
of (182) for the particular case λ = µ = 1 with

x̂ ′ =
(
x +

r

2
, y, z, t

)
and x̂ ′′ =

(
x − r

2
, y, z, t

)
.

The coefficient C11ξη(x̂
′ − x̂ ′′) then depends only upon r and, according to (183), it must have

the form

C11ξη(r) =
∫

qξqη(q
2
2 + q2

3 )

q4
F(q) exp(−iq1r)Dq

where F(q) is a function only of the wavenumber q. It is clear from this integral that C11ξη

must be diagonal in the indices ξ, η, and have equal transverse components: C1122 = C1133.
We now define Q(L)

αβ (x̂1, x̂2|x̂) to be the connected correlation function formed from the
elementary fields vα(x̂1) and vβ(x̂2), with the insertion of the longitudinal energy operator
O2(x̂), ie it is the particular case of (42) with s = 2 and l = 2. Then

Q
(c)
αβ11(x̂1, x̂2|x̂) = 2Q(L)

αβ (x̂1, x̂2|x̂).
Similarly, we define Q(T )

αβ (x̂1, x̂2|x̂) to be the correlation function with vα(x̂1) and vβ(x̂2), and
the insertion of the transverse energy operator

O
(T )
2 (x̂) = 1

2

(
v2

2 + v2
3

)
.

Thus, we have

Q
(c)
αβ22(x̂1, x̂2|x̂) + Q(c)

αβ33(x̂1, x̂2|x̂) = 2Q(T )
αβ (x̂1, x̂2|x̂).

Finally, we define longitudinal and transverse coefficients by writing

C2(r) = 2C1111(r)

and

C2(r) = 2C1122(r) = 2C1133(r).

Using these definitions, and taking into account the diagonality of C11ξη, enables us to express
the inverse Fourier transform of (182), for the case λ = µ = 1, as

H
(c)
αβ11(x̂1, x̂2|x̂, r) = C2(r)Q

(L)
αβ (x̂1, x̂2|x̂) + C ′

2(r)Q
(T )
αβ (x̂1, x̂2|x̂)

which, in the limit as r → 0, leads to

〈vα(x̂1)vβ(x̂2)v+v−〉 =
〈
vα(x̂1)vβ(x̂2)

[
E

3
+ C2(r)O2(x̂) + C2(r)O

(T )
2 (x̂) + · · ·

]〉
.

Since the fields vα(x̂1) and vβ(x̂2) are arbitrary, we may conclude that

v+v− = E

3
I + C2(r)O2(x̂) + · · · .

Note that we have discarded the transverse operator because it is subdominant. This follows
immediately from the analysis of section 5. For example, in the case of O(T )

2 , when we
calculate the corresponding value of the constant a(2)1 , as defined in (135), we get twice the
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value given in (150) for the longitudinal operator O2(x̂), because, by isotropy, each of the two
transverse components ofO(T )

2 (x̂) contributes an amount equal to the value obtained forO2(x̂)

and, hence, the right hand side of (159) then yields an anomalous exponent of 2,2, indicating
that O(T )

2 (x̂) makes a subdominant contribution to S2(r). Thus, we have shown, to within the
order g2 of the calculation, that the dominant term of the OPE for v+v− has the form given
in (39).

10. Summary and discussion

The fact that it has been possible to demonstrate multiscaling and calculate anomalous
exponents successfully from the generating functional by means of perturbation theory,
notwithstanding the strong nonlinearity of the NS equations, is attributable to several factors.
These include: (1) the use of a modified quadratic form, which is derived self-consistently
from the NS nonlinearity; (2) the incorporation in the generating functional of the composite
operators which appear in the definition of the general structure function; (3) the application of
OPEs to derive corrections to the Kolmogorov exponents in terms of the anomalous dimensions
of these operators; (4) the identification of a class of irreducible Green functions containing
insertions of these operators, which facilitate the calculation of their anomalous dimensions;
(5) the elimination of sweeping convection effects using a random Galilean transformation of
the velocity field; and, finally, (6) the deduction of the inertial range scaling using an uv fixed
point of the RG to achieve the required small wavenumber limit. Let us now consider how each
of these factors contributes to overcoming the obstacles encountered in previous applications
of the RG.

The use of the modified quadratic form is an important element in the success of our
calculation, because it provides an accurate initial approximation, which yields the Kolmogorov
distribution in the inertial range limit. By contrast, in the early work which employed a
field theoretic RG [34], and in subsequent developments of it [35–37], including equivalent
formulations based on [38], reviewed recently in [39], the zero-order approximation is based
solely on on the linear terms of the NS equations, as in a conventional field theory calculation.
Because this is a poor approximation for turbulence, it does not result in a genuine weak
expansion parameter. For example, in the previous applications of RG techniques based on
an expansion in the force spectrum exponent (i.e. the ε-expansion), in which the expansion
about ε = 0 is extrapolated to ε = 4, the value of the coupling constant is not small, at
the ir fixed point which is used. Therefore, the accuracy of the expansion is uncontrolled.
Indeed, according to [40], it may even be uncontrolled when ε � 1, and there are problems in
establishing its radius of convergence and the value of ε at which long range driving becomes
technically irrelevant [41].

However, our expansion is of a different nature. First, we do not use an ε-expansion.
Actually, there is no force power spectrum in our calculation as such. As we showed, the force
spectrum h(k) remains in the calculation as an arbitrary function, subject only to the requirment
that it yields a finite input power. What the modified quadratic form provides, however, is an
apparent force power spectrum D(k), but its exponent is fixed by the solution (172), and,
thus, cannot be varied. Second, we do not use an ir fixed point, because we are interested in
taking the short wavelength limit, for which purpose we require an uv fixed point. Together,
these differences result in a genuinely small coupling constant g, which is about 1/20 at the
fixed point, as shown in section 4. Hence, our expansion is inherently more accurate than the
ε-expansion. In fact, given that our calculation is carried out to 2-loop order, its errors are
controlled at g3 ∼ 10−4. Another significant consequence of using the modified quadratic
form is that no convergence problems are encountered in the uv region. This, together with the
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fact that we do not use an ε-expansion or an ir fixed point, means that none of the ingredients
which cause marginality by power counting in previous applications of the RG [40], are present
in our approach.

On the other hand, there is a similar problem to be faced in the present calculation.
Any fully renormalized theory of turbulence must contain an infinite number of renormalized
functions because it must be equivalent to the hierarchy of equations for the cumulants.
This equivalence has been demonstrated recently [42]. In fact, each cumulant will have a
representation as a expansion in terms of irreducible renormalized functions. Thus, one has
an infinite set of vertex functions to contend with. Now, when any one of these irreducible
functions is calculated in perturbation theory using the modified quadratic form, the overall
logarithmic divergence will remain, after sweeping divergences have been eliminated. So the
problem in the present approach amounts to the resummation of these logarithms. However,
we showed in section 5 that this difficulty could be overcome, in relation to multiscaling, by
identifying the infinite sub-class of functions which yields the desired information relating to
anomalous exponents while being, at the same time, amenable to resummation using the
RG. The irreducible inserted nonlinear Green functions defined in section 5 satisfy both
requirements. Being fully irreducible they give full n-point correlations. However, as we
have seen, to render them tractable, it was expedient to obtain a mean response to forcing at
the centroid of the excitation points. This averaging thus constitutes a closure approximation.
Although this type of closure approximation permits considerable progress to be made with
the calculation of the exponents, the averaging process limits its applicability to relatively low
orders, n � 10, because the multiple correlations between the apparent forcing at different
space–time points are not then approximated accurately enough at higher orders. Thus, a
different approximation would be required to obtain the asymptotic scaling at large orders and
it remains for future work to discover a suitable approach.
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